Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a theorem of Barbara Schmid


Author: Larry Smith
Journal: Proc. Amer. Math. Soc. 128 (2000), 2199-2201
MSC (1991): Primary 13A50
DOI: https://doi.org/10.1090/S0002-9939-99-05259-4
Published electronically: November 29, 1999
MathSciNet review: 1654096
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a finite group and $\rho\colon\ G\hookrightarrow\mathrm{GL} (n,\mathbb{C})$ a complex representation. Barbara Schmid has shown that the algebra of invariant polynomial functions $\mathbb{C}[V]^G$ on the vector space $V=\mathbb{C}^n$ is generated by homogeneous polynomials of degree at most $\beta$, where $\beta$ is the largest degree of a generator in a minimal generating set for $\mathbb{C}[\mathrm{reg}_{\mathbb{C}}(G)]^G$, and $\mathrm{reg}_{\mathbb{C}}(G)$ is the complex regular representation of $G$. In this note we give a new proof of this result, and at the same time extend it to fields $\mathbb{F}$ whose characteristic $p$ is larger than $|G|$, the order of the group $G$.


References [Enhancements On Off] (What's this?)

  • [1] D. Hilbert, Über die Theorie der Algebraischen Formen, Math. Ann. 36 (1890), 473-534.
  • [2] E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1916), 89-92.
  • [3] E. Noether, Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Characteristik p, Nachr. v. d. Ges. d. Wiss. zu Göttingen (1926), 28-35.
  • [4] B. J. Schmid, Topics in Invariant Theory, Séminaire d'Algèbre P. Dubriel et M.-P. Malliavin 1989-1990, Lecture Notes in Math. 1478, Springer-Verlag, Heidelberg, Berlin, 1991.
  • [5] L. Smith, Polynomial Invariants of Finite Groups, (second printing), A. K. Peters Ltd., Wellesley, Mass. 1995. MR 96f:13008
  • [6] L. Smith, Noether's Bound in the Invariant Theory of Finite Groups, Arch. der Math. 66 (1996), 89-92. MR 96k:13004
  • [7] L. Smith, Polynomial Invariants of Finite Groups, A Survey of Recent Results, Bull. of the Amer. Math. Soc. 34 (1997), 211-250. MR 96f:13008
  • [8] L. Smith and R. E. Strong, On the Invariant Theory of Finite Groups: Orbit Polynomials and Splitting Principles, J. of Algebra 110 (1987), 134-157. MR 88k:20077

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 13A50

Retrieve articles in all journals with MSC (1991): 13A50


Additional Information

Larry Smith
Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455; Mathematisches Institut der Universität, D 37073 Göttingen, Germany
Email: smith@math.umn.edu, larry@sunrise.uni-math.gwdg.de

DOI: https://doi.org/10.1090/S0002-9939-99-05259-4
Published electronically: November 29, 1999
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society