Carleson measures and some classes

of meromorphic functions

Authors:
Rauno Aulaskari, Hasi Wulan and Ruhan Zhao

Journal:
Proc. Amer. Math. Soc. **128** (2000), 2329-2335

MSC (1991):
Primary 30D50

DOI:
https://doi.org/10.1090/S0002-9939-99-05273-9

Published electronically:
December 7, 1999

MathSciNet review:
1657750

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For let be the Möbius transformation defined by , and let be the Green's function of the unit disk . We construct an analytic function belonging to for all , , but not belonging to meromorphic in and for any , . This gives a clear difference as compared to the analytic case where the corresponding function spaces ( and ) are same.

**[1]**R. Aulaskari and P. Lappan,*Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal*, Complex analysis and its applications, Pitman Research Notes in Mathematics, 305, Longman Scientific & Technical, Harlow, 1994, pp. 136-146. MR**95g:30045****[2]**R. Aulaskari, P. Lappan, J. Xiao and R. Zhao,*On -Bloch spaces and multipliers of Dirichlet spaces*, J. Math. Anal. Appl.**209**(1997), 103-121. MR**98e:30036****[3]**R. Aulaskari, D. A. Stegenga and J. Xiao,*Some subclasses of BMOA and their characterization in terms of Carleson measure*, Rocky Mountain J. Math.**26**(1996), 485-506. MR**97k:30045****[4]**R. Aulaskari, J. Xiao and R. Zhao,*On subspaces and subsets of and*, Analysis**15**(1995), 101-121. MR**96j:30050****[5]**A. Baernstein II,*Analytic functions of bounded mean oscillation*, Aspects of contemporary complex analysis, Academic Press, London, 1980, pp. 3-36. MR**84g:42021****[6]**P. L. Duren,*Theory of spaces*, Academic Press, New York, 1970. MR**42:3552****[7]**M. Essén and J. Xiao,*Some results on spaces,*, J. Reine Angew. Math.**485**(1997), 173-195. MR**98d:46024****[8]**J. B. Garnett,*Bounded analytic functions*, Academic Press, New York, 1981. MR**83g:30037****[9]**[??]Z. Pavi\'{c}evi\'{c},*The Carleson measure and meromorphic functions of uniformly bounded characteristic*, Ann. Acad. Sci. Fenn. Ser. A I Math.**16**(1991), 249-254. MR**93h:30044****[10]**J. Rong and J. Huang,*The Carleson measure characteristics of UBC functions*, J. Math. (Wuhan)**10**(1990), 255-262. MR**92f:30051****[11]**O. Reséndiz and L. M. Tovar,*Carleson measures, Blaschke products and spaces*, manuscript.**[12]**S. Yamashita,*A non-normal function whose derivative has finite area integral of order*, Ann. Acad. Sci. Fenn. Ser. A I Math.**4**(1978/1979), 293-298. MR**81k:30042****[13]**S. Yamashita,*Functions of uniformly bounded characteristic*, Ann. Acad. Sci. Fenn. Ser. A I Math.**7**(1982), 349-367. MR**84d:30060****[14]**H. Wulan,*On some classes of meromorphic functions*, Ann. Acad. Sci. Fenn. Math. Diss.**116**(1998), 1-57. CMP**99:01**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
30D50

Retrieve articles in all journals with MSC (1991): 30D50

Additional Information

**Rauno Aulaskari**

Affiliation:
Department of Mathematics, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu, Finland

Email:
Rauno.Aulaskari@joensuu.fi, wulan@cc.joensuu.fi

**Hasi Wulan**

Affiliation:
Department of Mathematics, Inner Mongolia Normal University, Hohhot 010022, People’s Republic of China

**Ruhan Zhao**

Affiliation:
Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

Email:
zhao@kusm.kyoto-u.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-99-05273-9

Keywords:
Carleson measure,
normal function,
the $Q_{p}$ space

Received by editor(s):
April 20, 1998

Received by editor(s) in revised form:
September 15, 1998

Published electronically:
December 7, 1999

Communicated by:
Albert Baernstein II

Article copyright:
© Copyright 2000
American Mathematical Society