RELATIONS BETWEEN THE TAYLOR SPECTRUM
AND THE XIA SPECTRUM

MUNEO CHÔ

(Communicated by David R. Larson)

Dedicated to Professor Jyunji Inoue on his sixtieth birthday

Abstract. Let $T = (T_1, T_2, \ldots, T_n)$ be a doubly commuting n-tuple of p-hyponormal operators T_j with unitary operators U_j from the polar decompositions $T_j = U_j |T_j|$ ($j = 1, \ldots, n$). Let $U = (U_1, \ldots, U_n)$ and $A = |T_1| \cdots |T_n|$. In this paper, we will show relations between the Taylor spectrum $\sigma_T(T)$ and the Xia spectrum $\sigma_X(U, A)$.

1. Introduction

In [12], D. Xia introduced a class of semi-hyponormal tuples and a notion of spectrum for such tuples. We call this spectrum the Xia spectrum. Xia proved Putnam’s inequality for semi-hyponormal tuples. In [3], M. Chô and T. Huruya generalized Putnam’s inequality to p-hyponormal tuples. Also, in [9], B. P. Duggal showed a very interesting inequality of doubly commuting n-tuples of p-hyponormal operators. In this paper, we show that the Xia spectrum of a doubly commuting n-tuple $T = (T_1, \ldots, T_n)$ of p-hyponormal operators T_j with unitary operators U_j from the polar decompositions $T_j = U_j |T_j|$ ($j = 1, \ldots, n$) essentially coincides with its Taylor spectrum.

Let \mathcal{H} be a complex separable Hilbert space and $B(\mathcal{H})$ the set of all bounded linear operators on \mathcal{H}. For $T \in B(\mathcal{H})$, let $\sigma(T)$ be the spectrum of T. An operator $T \in B(\mathcal{H})$ is called p-hyponormal if $(T^*T)^p \geq (TT^*)^p$. If $p = \frac{1}{2}$, then T is called semi-hyponormal. Let W be a unitary operator and $A \in B(\mathcal{H})$. If

$$S_W^\pm(A) = \lim_{n \to \pm \infty} (W^{-n}AW^n)$$

exist, then the operators $S_W^\pm(A)$ are called the polar symbols of A (with respect to W). Let $T = U |T|$ be the polar decomposition of T. If T is semi-hyponormal and U is unitary, then $S_U^\pm(|T|)$ exist (cf. [13]). In [13], D. Xia proved the following theorem:

Received by the editors March 12, 1998 and, in revised form, September 18, 1998.
1991 Mathematics Subject Classification. Primary 47B20.
Key words and phrases. Putnam’s inequality, Taylor spectrum, Xia spectrum, generalized polar symbols.
This research was partially supported by Grant-in-Aid Scientific Research No.09640229.

©2000 American Mathematical Society

2357
Theorem A (Theorem IV.4.1 of [13]). Let $T = U|T|$ be a semi-hyponormal operator with U unitary. Then
\[\sigma(T) = \bigcup_{0 \leq k \leq 1} \sigma(T_k), \]
where $T_k = kS_U^+(T) + (1-k)S_U^-(T)$.

2. Generalized polar symbols

Throughout this paper let p be such that $0 < p < \frac{1}{2}$. Let $T = U|T|$ be a p-hyponormal operator with U unitary. Since $U|T|^{2p}$ is semi-hyponormal, there exist $S_U^+(|T|^{2p})$. For $0 \leq k \leq 1$, we denote
\[T_k = U\{kS_U^+(|T|^{2p}) + (1-k)S_U^-(|T|^{2p})\}^{\frac{1}{2}}; \]
we call the operators T_k the generalized polar symbols of T. Note that if an operator $T = U|T|$ is a semi-hyponormal operator with U unitary, then $T_k = T_k$ for every $0 \leq k \leq 1$. It is easy to check that T_k is a normal operator for every $0 \leq k \leq 1$. For $T \in B(\mathcal{H})$, let $\sigma_{na}(T)$ denote the normal approximate point spectrum of T, i.e., the set of all complex numbers z which satisfy the following condition: there exists a sequence $\{x_n\}$ of unit vectors in \mathcal{H} such that
\[\lim_{n \to \infty} \| (T - z)x_n \| = \lim_{n \to \infty} \| (T - z^*)x_n \| = 0. \]
If T is a normal operator, then $\sigma(T) = \sigma_{na}(T)$. In [12] this spectrum is called the joint approximate point spectrum, but we use this term for n-tuple of operators. The following theorem holds.

Theorem B (Lemma I.2.4 of [13]). Let $T \in B(\mathcal{H})$ and let $T = U|T|$ be the polar decomposition of T. Let $r > 0$. Then $re^{i\theta} \in \sigma_{na}(T)$ if and only if there exists a sequence $\{x_n\}$ of unit vectors in \mathcal{H} such that
\[\lim_{n \to \infty} \| (|T| - r)x_n \| = \lim_{n \to \infty} \| (U - e^{i\theta})x_n \| = 0. \]
Therefore, for a semi-hyponormal operator $T = U|T|$ with U unitary and a non-zero $re^{i\theta} \in \mathbb{C}$, it follows that $re^{i\theta} \in \sigma_{na}(T_k)$ if $re^{i\theta} \in \sigma(T_k)$, because each T_k is a normal operator ($0 \leq k \leq 1$).

The following result was proved in [5]. For the sake of completeness, we will give a simple proof.

Theorem 1 (Theorem of [5]). Let $T = U|T|$ be a p-hyponormal operator with U unitary. Then
\[\sigma(T) = \bigcup_{0 \leq k \leq 1} \sigma(T_k). \]

For the proof of this theorem, we need the following result.

Theorem C (Theorem 3 of [1]). Let $T = U|T|$ be a p-hyponormal operator with U unitary. Then
\[\sigma(U|T|^{2p}) = \{ r2pe^{i\theta} \mid re^{i\theta} \in \sigma(T) \}. \]

Proof of Theorem 1. Note that $S_U^-(|T|^{2p}) \leq |T|^{2p} \leq S_U^+(|T|^{2p})$ (cf. Th.II.2.7 of [13]). If $0 \in \sigma(T)$, then $0 \in \sigma(|T|)$ and hence $0 \in \sigma(T_0)$, $T_0 = U\{S_U^+(|T|^{2p})\}^{\frac{1}{2}}$.
Conversely, let $0 \in \bigcup_{0 \leq k \leq 1} \sigma(T_k)$. Since T_k is normal, we have $0 \in \sigma(S_U^+(|T|^{2p}))$ and
hence $0 \in \sigma(|T|)$ (cf. Th.II.1.5 of [12]). Therefore, we have $0 \in \sigma(T)$. Next we prove that, for a non-zero $z = re^{i\theta} \in \mathbb{C}$, $z \in \sigma(T)$ if and only if $z \in \bigcup_{0 \leq k \leq 1} \sigma(T_k)$. Let $S = |T|^{2p}$. Then S is semi-hyponormal and from Theorem we have

$$z \in \sigma(T) \iff r^{2p}e^{i\theta} \in \sigma(S) \iff \exists k (0 \leq k \leq 1) ; r^{2p}e^{i\theta} \in \sigma(S_{(k)}) \quad \text{from Theorem A}$$

$$\iff \exists k (0 \leq k \leq 1) ; r^{2p}e^{i\theta} \in \sigma_{na}(S_{(k)}) \quad \text{from Theorem B}$$

$$\iff \exists k (0 \leq k \leq 1) ; re^{i\theta} \in \sigma_{na}(T_k)$$

$$\iff z \in \bigcup_{0 \leq k \leq 1} \sigma(T_k).$$

The proof is now complete.

3. THE TAYLOR SPECTRUM AND THE XIA SPECTRUM

For a commuting n-tuple $T = (T_1, \ldots, T_n)$, the Taylor spectrum and the joint approximate point spectrum of T are denoted by $\sigma_T(T)$ and $\sigma_{ja}(T)$, respectively. It is well known that $\sigma_T(T) = \sigma_{ja}(T)$ if T is a commuting n-tuple of normal operators. If $T = (T_1, \ldots, T_n)$ is a doubly commuting n-tuple of p-hyponormal operators, then, by Theorem 7 of [3], it follows that $\sigma_T(T) = \{ (z_1, \ldots, z_n) \in \mathbb{C}^n : (z_1, \ldots, z_n) \in \sigma_{ja}(T^*) \}$, where $T^* = (T_1^*, \ldots, T_n^*)$. Let $U = (U_1, \ldots, U_n)$ be a commuting n-tuple of unitary operators. Let $Q_j (j = 1, \ldots, n)$ on $B(H)$ be defined by

$$Q_j A = A - U_j AU_j^* \quad (A \in B(H)).$$

Let $A \in B(H)$ and $A \geq 0$. An $(n + 1)$-tuple (U, A) is called p-hyponormal if

$$Q_{j_1} \cdots Q_{j_m} A^{2p} \geq 0$$

for all $1 \leq j_1 < \cdots < j_m \leq n$. We simply denote $S^+_{U_j}(A)$ by $S^+_{j}(A)$ for every $j = 1, \ldots, n$. Let (U, A) be a p-hyponormal tuple and $0 \leq k \leq 1$. We denote

$$(kS_j^+ + (1 - k)S_j^-)_p A = \{ kS_j^+ (A^{2p}) + (1 - k)S_j^- (A^{2p}) \}_p.$$

For $k = (k_1, \ldots, k_n) \in [0, 1]^n$, the general polar symbols A_k of A are defined by

$$A_k = \prod_{j=1}^n (k_j S_j^+ + (1 - k_j)S_j^-)_p A.$$

Then, by [6], (U, A, A_k) is a commuting $(n + 1)$-tuple of normal operators for every $k \in [0, 1]^n$. We define the Xia spectrum $\sigma_X(U, A)$ of (U, A) by

$$\sigma_X(U, A) = \bigcup_{k \in [0, 1]^n} \sigma_{ja}(U, A_k).$$

By Theorem 2 of [6] it follows that, for a p-hyponormal tuple (U, A),

$$\|Q_1 \cdots Q_n A^{2p}\| \leq \frac{2^n}{(2\pi)^n} \int \cdots \int_{\sigma_X(U, A)} r^{2p-1}d\theta_1 \cdots d\theta_n dr.$$

We now have the following

Lemma 2. Let $T = (T_1, \ldots, T_n)$ be a doubly commuting n-tuple of p-hyponormal operators $T_j = U_j T_j$ with U_j unitary operators $(j = 1, \ldots, n)$, and let $U = (U_1, \ldots, U_n)$ and $A = |T_1| \cdots |T_n|$. Then (U, A) is p-hyponormal.
Proof. Since $A^{2p} = |T_1|^{2p} \cdots |T_n|^{2p}$, we have
\[Q_jA^{2p} = \left(\prod_{i \neq j} |T_i|^{2p} \right) (|T_j|^{2p} - U_j|T_j|^{2p}U_j^*) \]
for every $j (j = 1, \ldots, n)$. Hence (U, A) is p-hyponormal.

With the above notations (Lemma [2]), we also have, using the above,
\[\| \prod_{j=1}^n (|T_j|^{2p} - |T_j|^*|T_j|^{2p}) \| \leq \frac{2p}{(2\pi)^{2n}} \int \cdots \int_{\sigma_X(U, A)} r^{2p-1} d\theta_1 \cdots d\theta_n \, dr \]
(this inequality is due to Duggal [3]), and
\[(k_jS_j^+ + (1 - k_j)S_j^-)A = \left(\prod_{i \neq j} (T_i) \right) \left(k_jS_j^+ + (1 - k_j)S_j^- \right) \left(|T_j|^{2p} \right) \frac{1}{T_j} \]
Hence, for every $k = (k_1, \ldots, k_n) \in [0, 1]^n$, it follows that
\[A_k = \prod_{j=1}^n A_j, \]
where $A_j = \left(k_jS_j^+ + (1 - k_j)S_j^- \right) \left(|T_j|^{2p} \right) \frac{1}{T_j} (j = 1, \ldots, n)$. We prove the following

Theorem 3. Let $T = (T_1, \ldots, T_n)$ be a doubly commuting n-tuple of p-hyponormal operators with unitary operators U_j from the polar decompositions $T_j = U_j|T_j|$ ($j = 1, \ldots, n$). Let $U = (U_1, \ldots, U_n)$ and $A = |T_1| \cdots |T_n|$. If $(z_1, \ldots, z_n, a) \in \sigma_X(U, A)$, then there exist non-negative numbers a_1, \ldots, a_n such that $(z_1a_1, \ldots, z_na_n) \in \sigma_T(T)$ and $a = a_1 \cdots a_n$.

Conversely, if $(z_1a_1, \ldots, z_na_n) \in \sigma_T(T)$, then $(z_1, \ldots, z_n, a_1 \cdots a_n) \in \sigma_X(U, A)$, where $|z_j| = 1$ and $a_j \geq 0$ for every $j (j = 1, \ldots, n)$.

For the proof of this theorem, we need the following Berberian extension theorem.

Theorem D (Theorem 1 of [1]). Let $B(H)$ be the algebra of all bounded operators on H. Then there exist an extension space K of H and a faithful *-representation of $B(H)$ into $B(K)$ such that
\[\sigma_{ja}(T_1, \ldots, T_n) = \sigma_{ja}(T_1^*, \ldots, T_n^*) = \sigma_p(T_1^*, \ldots, T_n^*), \]
where $\sigma_p(T_1, \ldots, T_n)$ is the joint point spectrum of (T_1, \ldots, T_n). Moreover, if T is p-hyponormal, then T^* is also p-hyponormal.

Proof of Theorem First we assume that $(z_1, \ldots, z_n, a) \in \sigma_X(U, A)$. We show by induction that there exist a_1, \ldots, a_n ($\forall a_j \geq 0$) such that
\[(z_1a_1, \ldots, z_na_n) \in \sigma_T(T) \text{ and } a = a_1 \cdots a_n. \]
If $n = 1$, Theorem 3 holds by Theorem 3 of [6]. By inductive hypothesis, there exist $k = (k_1, \ldots, k_n) \in [0, 1]^n$ and a sequence $\{x_m\}$ of unit vectors such that
\[(U_j - z_j)x_m \rightarrow 0 \quad (j = 1, \ldots, n) \text{ and } (A_k - a)x_m \rightarrow 0, \]
where $A_k = \prod_{j=1}^n (k_jS_j^+ + (1 - k_j)S_j^-)A$. By Lemma 2 we have
\[A_k = \prod_{j=1}^n A_j, \]
where $A_j = \{ k_j S_j^+ (|T_j|^2p) + (1 - k_j) S_j^- (|T_j|^2p) \} \frac{1}{p}$. By Theorem D let K be the extension space of H. Then

$$M = \text{Ker}(U_1^\circ - z_1) \cap \cdots \cap \text{Ker}(U_n^\circ - z_n) \cap \text{Ker}(A_n^\circ - a)$$

is a non-zero subspace of K. Since $(U_1^\circ, ..., U_n^\circ, A_1^\circ, ..., A_n^\circ)$ is a commuting 2n-tuple, M is an invariant subspace for $A_1^\circ, ..., A_n^\circ$. Also since $a \in \sigma(A_n^\circ |M)$, there exist $a_1, ..., a_n$ and a non-zero vector $x^0 \in M$ such that

$$(A_j^\circ - a_j)x^0 = 0 \text{ for every } j (j = 1, ..., n) \text{ and } a = a_1 \cdots a_n,$$

by Theorem D and the spectral mapping theorem for the joint spectrum. Let

$$N = \text{Ker}(U_n^\circ - z_n) \cap \text{Ker}(A_n^\circ - a_n).$$

Then $$(z_1, ..., z_{n-1}, a_1 \cdots a_{n-1}) \in \sigma_X(U', A')$$

where $U' = (U_1, ..., U_{n-1})$ and $A' = \prod_{j=1}^{n-1} A_j$. By Theorem D and the inductive hypothesis, we have

$$(z_1 a_1, ..., z_{n-1} a_{n-1}) \in \sigma_T(T_1, ..., T_{n-1}).$$

Since $S = (T_1^\circ |N, ..., T_{n-1}^\circ |N)$ is a doubly commuting $(n-1)$-tuple of p-hyponormal operators on N and $(z_1 a_1, ..., z_{n-1} a_{n-1}) \in \sigma_T(S)$, Theorem 7 of $[3]$ and Theorem D imply that there exists a non-zero vector y^0 in N such that

$$(T_j^\circ - z_j a_j)^* y^0 = 0 \text{ for every } j (j = 1, ..., n-1).$$

Let

$$L = \bigcap_{j=1}^{n-1} \text{Ker}((T_j^\circ - z_j a_j)^*).$$

Then $N \cap L$ is a non-zero subspace of K. Hence we have $(z_n, a_n) \in \sigma_{fp}(U_n^\circ |L, A_n^\circ |L)$ and $(z_n, a_n) \in \sigma_X(U_n^\circ |L, T_n^\circ |L)^\circ$. Also by the induction we have

$$z_n a_n \in \sigma(T_n^\circ |L).$$

Since $T_n^\circ |L$ is a p-hyponormal operator on L, there exists a non-zero vector $w^0 \in L$ such that

$$(T_n^\circ - z_n a_n)^* w^0 = 0.$$

Therefore, there exists a sequence $\{ x_m \}$ of unit vectors such that

$$(T_j - z_j a_j)^* x_m \rightarrow 0 \text{ for every } j (j = 1, ..., n).$$

Hence we have $(z_1 a_1, ..., z_n a_n) \in \sigma_T(T)$.

Conversely, we assume that $(z_1 a_1, ..., z_n a_n) \in \sigma_T(T)$. Also assume that the hypothesis holds for doubly commuting $(n-1)$-tuples of p-hyponormal operators. By Theorem 7 of $[3]$ there exists a sequence $\{ x_m \}$ of unit vectors such that

$$(T_j - z_j a_j)^* x_m \rightarrow 0 \text{ for every } j (j = 1, ..., n).$$

Consider the extension space K of H and let

$$U = \text{Ker}((T_n^\circ - z_n a_n)^*).$$

By Theorem D and $[1]$ there exists $z^0 \in U$ such that

$$(T_j^\circ - z_j a_j)^* z^0 = 0 \text{ for every } j (j = 1, ..., n-1).$$
Since \((T_1^0, \ldots, T_{n-1}^0) \) is a commuting \((n-1)\)-tuple of \(p\)-hyponormal operators on \(\mathcal{U} \), it holds that \((z_1a_1, \ldots, z_{n-1}a_{n-1}) \in \sigma_{\mathcal{U}}(T_1^0, \ldots, T_{n-1}^0)\). By the inductive hypothesis
\[
(z_1, \ldots, z_{n-1}, a_1 \cdots a_{n-1}) \in \sigma_X(U', A'),
\]
where \(U' = (U_1^0, \ldots, U_{n-1}^0) \) and \(A' = [T_1^0, \ldots, T_{n-1}^0] \). Hence there exist \((m_1, \ldots, m_{n-1}) \in \mathbb{N}^{n-1} \) and a non-zero vector \(u^o \in \mathcal{U} \) such that
\[
(U_j^o - z_j)u^o = (A_1^o \cdots A_{n-1}^o - a_1 \cdots a_{n-1})u^o = 0,
\]
where \(A_j = \{m_jS^+_j(T_j^{2p}) + (1 - m_j)S^-_j(T_j^{2p})\} \) for every \(j = 1, \ldots, n-1 \).

Next let
\[
V = \bigcap_{j=1}^{n-1} \ker(U_j^o - z_j) \cap \ker(A_1^o \cdots A_{n-1}^o - a_1 \cdots a_{n-1}).
\]

Since \(\mathcal{U} \cap V \) is a non-zero subspace, we have
\[
z_an \in \sigma(T_n^o|V).
\]

Hence by Theorem 1 there exists \(0 \leq n \leq 1 \) such that \(z_an \in \sigma(U_nA_n) \), where \(A_n = \{m_nS^+_n(T_n^{2p}) + (1 - m_n)S^-_n(T_n^{2p})\} \). Since \(U_nA_n \) is a normal operator, by Theorem D there exists \(v^o \in V \) such that
\[
(U_n^o - z_n)v^o = (A_n^o - a_n)v^o = 0.
\]

Let \(m = (m_1, \ldots, m_n) \) and \(A_m = \prod_{j=1}^n A_j \). By Theorem D we have
\[
(z_1, \ldots, z_n, a_1 \cdots a_n) \in \sigma_p(U_1^o, \ldots, U_n^o, A_m^o),
\]
and hence \((z_1, \ldots, z_n, a_1 \cdots a_n) \in \sigma(a(U, A_m)). \)

Using the definition of the Xia spectrum, we obtain
\[
(z_1, \ldots, z_n, a_1 \cdots a_n) \in \sigma_X(U, A).
\]

The proof is now complete.

Acknowledgments

This paper was inspired by the paper [9] and the author would like to express his cordial thanks to Professor Raul E. Cruto. He would also like to express his thanks to Professor B. P. Duggal. He would also like to express his thanks to Professor Raul E. Cruto for his useful suggestion.

References

Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan

E-mail address: m-cho@cc.kanagawa-u.ac.jp