The algebras of infinite graphs
Authors:
Neal J. Fowler, Marcelo Laca and Iain Raeburn
Journal:
Proc. Amer. Math. Soc. 128 (2000), 23192327
MSC (1991):
Primary 46L55
Published electronically:
December 8, 1999
MathSciNet review:
1670363
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We associate algebras to infinite directed graphs that are not necessarily locally finite. By realizing these algebras as CuntzKrieger algebras in the sense of Exel and Laca, we are able to give criteria for their uniqueness and simplicity, generalizing results of Kumjian, Pask, Raeburn, and Renault for locally finite directed graphs.
 1.
T. Bates, D. Pask, I. Raeburn and W. Szyma\'{n}ski, The algebras of rowfinite graphs, The University of Newcastle, preprint, 1999.
 2.
Bruce
Blackadar, Shape theory for 𝐶*algebras, Math. Scand.
56 (1985), no. 2, 249–275. MR 813640
(87b:46074)
 3.
Joachim
Cuntz, Simple 𝐶*algebras generated by isometries,
Comm. Math. Phys. 57 (1977), no. 2, 173–185. MR 0467330
(57 #7189)
 4.
J.
Cuntz, A class of 𝐶*algebras and topological Markov
chains. II. Reducible chains and the Extfunctor for
𝐶*algebras, Invent. Math. 63 (1981),
no. 1, 25–40. MR 608527
(82f:46073b), http://dx.doi.org/10.1007/BF01389192
 5.
Joachim
Cuntz and Wolfgang
Krieger, A class of 𝐶*algebras and topological Markov
chains, Invent. Math. 56 (1980), no. 3,
251–268. MR
561974 (82f:46073a), http://dx.doi.org/10.1007/BF01390048
 6.
R. Exel, M. Laca and J. C. Quigg, Partial dynamical systems and algebras generated by partial isometries, The University of Newcastle, preprint, 1997.
 7.
R. Exel and M. Laca, CuntzKrieger algebras for infinite matrices, J. reine angew. Math., to appear.
 8.
N. J. Fowler and I. Raeburn, The Toeplitz algebra of a Hilbert bimodule, Indiana Univ. Math. J., to appear.
 9.
Masatoshi
Fujii and Yasuo
Watatani, CuntzKrieger algebras associated with adjoint
graphs, Math. Japon. 25 (1980), no. 4,
501–506. MR
594552 (83d:46069b)
 10.
Astrid
an Huef and Iain
Raeburn, The ideal structure of CuntzKrieger algebras,
Ergodic Theory Dynam. Systems 17 (1997), no. 3,
611–624. MR 1452183
(98k:46098), http://dx.doi.org/10.1017/S0143385797079200
 11.
Alex
Kumjian, David
Pask, Iain
Raeburn, and Jean
Renault, Graphs, groupoids, and CuntzKrieger algebras, J.
Funct. Anal. 144 (1997), no. 2, 505–541. MR 1432596
(98g:46083), http://dx.doi.org/10.1006/jfan.1996.3001
 12.
A. Kumjian, D. Pask and I. Raeburn, CuntzKrieger algebras of directed graphs, Pacific J. Math. 184 (1998), 161174. CMP 98:13
 13.
M.
H. Mann, Iain
Raeburn, and C.
E. Sutherland, Representations of finite groups and CuntzKrieger
algebras, Bull. Austral. Math. Soc. 46 (1992),
no. 2, 225–243. MR 1183780
(93k:46046), http://dx.doi.org/10.1017/S0004972700011862
 14.
Michael
V. Pimsner, A class of 𝐶*algebras generalizing both
CuntzKrieger algebras and crossed products by 𝑍, Free
probability theory (Waterloo, ON, 1995) Fields Inst. Commun.,
vol. 12, Amer. Math. Soc., Providence, RI, 1997,
pp. 189–212. MR 1426840
(97k:46069)
 1.
 T. Bates, D. Pask, I. Raeburn and W. Szyma\'{n}ski, The algebras of rowfinite graphs, The University of Newcastle, preprint, 1999.
 2.
 B. Blackadar, Shape theory for algebras, Math. Scand. 56 (1985), 249275. MR 87b:46074
 3.
 J. Cuntz, Simple algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173185. MR 57:7189
 4.
 J. Cuntz, A class of algebras and topological Markov chains II: reducible chains and the Extfunctor for algebras, Invent. Math. 63 (1981), 2540. MR 82f:46073b
 5.
 J. Cuntz and W. Krieger, A class of algebras and topological Markov chains, Invent. Math. 56 (1980), 251268. MR 82f:46073a
 6.
 R. Exel, M. Laca and J. C. Quigg, Partial dynamical systems and algebras generated by partial isometries, The University of Newcastle, preprint, 1997.
 7.
 R. Exel and M. Laca, CuntzKrieger algebras for infinite matrices, J. reine angew. Math., to appear.
 8.
 N. J. Fowler and I. Raeburn, The Toeplitz algebra of a Hilbert bimodule, Indiana Univ. Math. J., to appear.
 9.
 M. Fujii and Y. Watatani, CuntzKrieger algebras associated with adjoint graphs, Math. Japon. 25 (1980), 501506. MR 83d:46069b
 10.
 A. an Huef and I. Raeburn, The ideal structure of CuntzKrieger algebras, Ergod. Th. and Dynam. Sys. 17 (1997), 611624. MR 98k:46098
 11.
 A. Kumjian, D. Pask, I. Raeburn and J. Renault, Graphs, groupoids and CuntzKrieger algebras, J. Funct. Anal. 144 (1997), 505541. MR 98g:46083
 12.
 A. Kumjian, D. Pask and I. Raeburn, CuntzKrieger algebras of directed graphs, Pacific J. Math. 184 (1998), 161174. CMP 98:13
 13.
 M. H. Mann, I. Raeburn and C. E. Sutherland, Representations of finite groups and CuntzKrieger algebras, Bull. Austral. Math. Soc. 46 (1992), 225243. MR 93k:46046
 14.
 M. Pimsner, A class of algebras generalizing both CuntzKrieger algebras and crossed products by , Fields Inst. Comm. 12 (1997), 189212. MR 97k:46069
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
46L55
Retrieve articles in all journals
with MSC (1991):
46L55
Additional Information
Neal J. Fowler
Affiliation:
Department of Mathematics, The University of Newcastle, New South Wales 2308, Australia
Email:
neal@math.newcastle.edu.au
Marcelo Laca
Affiliation:
Department of Mathematics, The University of Newcastle, New South Wales 2308, Australia
Email:
marcelo@math.newcastle.edu.au
Iain Raeburn
Affiliation:
Department of Mathematics, The University of Newcastle, New South Wales 2308, Australia
Email:
iain@math.newcastle.edu.au
DOI:
http://dx.doi.org/10.1090/S0002993999053782
PII:
S 00029939(99)053782
Received by editor(s):
September 11, 1998
Published electronically:
December 8, 1999
Additional Notes:
This research was supported by the Australian Research Council.
Communicated by:
David R. Larson
Article copyright:
© Copyright 2000
American Mathematical Society
