Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Adjacency preserving mappings
of invariant subspaces of a null system


Author: Wen-ling Huang
Journal: Proc. Amer. Math. Soc. 128 (2000), 2451-2455
MSC (1991): Primary 51A50; Secondary 51B25
DOI: https://doi.org/10.1090/S0002-9939-99-05456-8
Published electronically: November 29, 1999
MathSciNet review: 1690993
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the space $I_r$ of invariant $r$-dimensional subspaces of a null system in $(2r+1)$-dimensional projective space, W.L. Chow characterized the basic group of transformations as all the bijections $\varphi:I_r\to I_r$, for which both $\varphi$ and $\varphi^{-1}$ preserve adjacency. In the present paper we show that the two conditions $\varphi:I_r\to I_r$ is a surjection and $\varphi$ preserves adjacency are sufficient to characterize the basic group. At the end of this paper we give an application to Lie geometry.


References [Enhancements On Off] (What's this?)

  • 1. R. Baer. Linear Algebra and Projective Geometry. Academic Press, New York, San Francisco, London, 1952. MR 14:675j
  • 2. Walter Benz, Vorlesungen über Geometrie der Algebren, Springer-Verlag, Berlin-New York, 1973 (German). Geometrien von Möbius, Laguerre-Lie, Minkowski in einheitlicher und grundlagengeometrischer Behandlung; Die Grundlehren der mathematischen Wissenschaften, Band 197. MR 0353137
  • 3. Walter Benz, Geometrische Transformationen, Bibliographisches Institut, Mannheim, 1992 (German). Unter besonderer Berücksichtigung der Lorentztransformationen. [With special reference to the Lorentz transformations]. MR 1183223
  • 4. W.-L. Chow. On the geometry of algebraic homogeneous spaces. Ann. Math., 50(1):32-67, 1949. MR 10:396d
  • 5. L.K. Hua. Geometries of matrices III. Fundamental theorems in the geometries of symmetric matrices. Trans. Amer. Math. Soc., 61:229-255, 1947. MR 9:171e
  • 6. L.K. Hua. Geometries of symmetric matrices over any field with characteristic other than two. Ann. Math., 50:8-31, 1949. MR 10:424h
  • 7. W.-l. Huang. Adjacency preserving mappings of Grassmann spaces. Abh. Math. Sem. Univ. Hamburg, 68:65-77, 1998. CMP 99:05
  • 8. June A. Lester, Distance preserving transformations, Handbook of incidence geometry, North-Holland, Amsterdam, 1995, pp. 921–944. MR 1360731, https://doi.org/10.1016/B978-044488355-1/50018-9
  • 9. Zhe-xian Wan, Geometry of matrices, Progress in algebraic combinatorics (Fukuoka, 1993) Adv. Stud. Pure Math., vol. 24, Math. Soc. Japan, Tokyo, 1996, pp. 443–453. MR 1414475, https://doi.org/10.1142/9789812830234
  • 10. Zhe-Xian Wan, Geometry of matrices, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. In memory of Professor L. K. Hua (1910–1985). MR 1409610

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 51A50, 51B25

Retrieve articles in all journals with MSC (1991): 51A50, 51B25


Additional Information

Wen-ling Huang
Affiliation: Mathematisches Seminar, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
Email: huang@math.uni-hamburg.de

DOI: https://doi.org/10.1090/S0002-9939-99-05456-8
Keywords: Null system, adjacency preserving mappings, symmetric matrices, Lie transformations
Received by editor(s): September 25, 1998
Published electronically: November 29, 1999
Communicated by: Christopher Croke
Article copyright: © Copyright 2000 American Mathematical Society