Uniformly perfect sets, rational semigroups, Kleinian groups and IFS's

Author:
Rich Stankewitz

Journal:
Proc. Amer. Math. Soc. **128** (2000), 2569-2575

MSC (1991):
Primary 30D05, 58F23

Published electronically:
February 29, 2000

MathSciNet review:
1662218

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

We show that the Julia set of a non-elementary rational semigroup is uniformly perfect when there is a uniform bound on the Lipschitz constants of the generators of . This also proves that the limit set of a non-elementary Möbius group is uniformly perfect when there is a uniform bound on the Lipschitz constants of the generators of the group and this implies that the limit set of a finitely generated non-elementary Kleinian group is uniformly perfect.

**1.**I. N. Baker,*Repulsive fixpoints of entire functions*, Math. Z.**104**(1968), 252–256. MR**0226009****2.**A. F. Beardon and Ch. Pommerenke,*The Poincaré metric of plane domains*, J. London Math. Soc. (2)**18**(1978), no. 3, 475–483. MR**518232**, 10.1112/jlms/s2-18.3.475**3.**Alan F. Beardon,*The geometry of discrete groups*, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR**698777****4.**Alan F. Beardon,*Iteration of rational functions*, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR**1128089****5.**David Boyd.

An invariant measure for finitely generated rational semigroups.*Complex Variables*, to appear.**6.**Lennart Carleson and Theodore W. Gamelin,*Complex dynamics*, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR**1230383****7.**A. Eremenko.

Julia sets are uniformly perfect.*Preprint, Purdue University*, 1992.**8.**Kenneth Falconer,*Fractal geometry*, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR**1102677****9.**A. Hinkkanen,*Julia sets of rational functions are uniformly perfect*, Math. Proc. Cambridge Philos. Soc.**113**(1993), no. 3, 543–559. MR**1207519**, 10.1017/S0305004100076192**10.**A. Hinkkanen and G. J. Martin,*The dynamics of semigroups of rational functions. I*, Proc. London Math. Soc. (3)**73**(1996), no. 2, 358–384. MR**1397693**, 10.1112/plms/s3-73.2.358**11.**A. Hinkkanen and G. J. Martin,*Julia sets of rational semigroups*, Math. Z.**222**(1996), no. 2, 161–169. MR**1429333**, 10.1007/PL00004533**12.**John E. Hutchinson,*Fractals and self-similarity*, Indiana Univ. Math. J.**30**(1981), no. 5, 713–747. MR**625600**, 10.1512/iumj.1981.30.30055**13.**R. Mañé and L. F. da Rocha,*Julia sets are uniformly perfect*, Proc. Amer. Math. Soc.**116**(1992), no. 1, 251–257. MR**1106180**, 10.1090/S0002-9939-1992-1106180-2**14.**Ch. Pommerenke,*Uniformly perfect sets and the Poincaré metric*, Arch. Math. (Basel)**32**(1979), no. 2, 192–199. MR**534933**, 10.1007/BF01238490**15.**Ch. Pommerenke,*On uniformly perfect sets and Fuchsian groups*, Analysis**4**(1984), no. 3-4, 299–321. MR**780609****16.**Fu-Yao Ren.

Advances and problems in random dynamical systems.

Preprint, 1998.**17.**Wilhelm Schwick,*Repelling periodic points in the Julia set*, Bull. London Math. Soc.**29**(1997), no. 3, 314–316. MR**1435565**, 10.1112/S0024609396007035**18.**Rich Stankewitz.

Completely invariant sets of normality for rational semigroups.*Complex Variables*.

to appear.**19.**Rich Stankewitz.*Completely invariant Julia sets of rational semigroups*.

PhD thesis, University of Illinois, 1998.**20.**Rich Stankewitz.

Completely invariant Julia sets of polynomial semigroups.*Proc. Amer. Math. Soc.*, 127:2889-2898, 1999. CMP**98:07****21.**Hiroki Sumi.

On hausdorff dimension of Julia sets of hyperbolic rational semigroups.*Kodai Math. J.*, 21:10-28, 1998. CMP**98:12****22.**Hiroki Sumi.

On dynamics of hyperbolic rational semigroups.*Journal of Mathematics of Kyoto University*, to appear.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
30D05,
58F23

Retrieve articles in all journals with MSC (1991): 30D05, 58F23

Additional Information

**Rich Stankewitz**

Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843

Email:
richs@math.tamu.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05313-2

Keywords:
Rational semigroups,
Kleinian groups,
Julia sets,
uniformly perfect,
iterated function systems

Received by editor(s):
August 26, 1998

Received by editor(s) in revised form:
October 5, 1998

Published electronically:
February 29, 2000

Communicated by:
Albert Baernstein II

Article copyright:
© Copyright 2000
American Mathematical Society