Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A sharp estimate for extremal functions


Author: Kehe Zhu
Journal: Proc. Amer. Math. Soc. 128 (2000), 2577-2583
MSC (1991): Primary 30C40, 46E22, 47A45
DOI: https://doi.org/10.1090/S0002-9939-00-05319-3
Published electronically: February 29, 2000
MathSciNet review: 1662242
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We prove a sharp pointwise estimate for extremal functions of invariant subspaces of some weighted Bergman spaces on the unit disk. The allowed weights include standard radial weights and logarithmically subharmonic weights.


References [Enhancements On Off] (What's this?)

  • 1. A. Aleman, S. Richter, and C. Sundberg, Beurling's theorem for the Bergman space, Acta Math. 177 (1996), 275-310. MR 98a:46034
  • 2. P. Duren, D. Khavinson, and H. Shapiro, Extremal functions in invariant subspaces of Bergman spaces, Illinois J. Math. 40 (1996), 202-210. MR 97h:30069
  • 3. P. Duren, D. Khavinson, H. Shapiro, and C. Sundberg, Contractive zero-divisors in Bergman spaces, Pacific J. Math. 157 (1993), 37-56. MR 94c:30048
  • 4. P. Duren, D. Khavinson, H. Shapiro, and C. Sundberg, Invariant subspaces in Bergman spaces and the bi-harmonic equation, Michigan Math. J. 41 (1994), 247-259. MR 95e:46030
  • 5. H. Hedenmalm, A factorization theorem for square area-integrable functions, J. Reine Angew. Math. 442 (1991), 45-68. MR 93c:30053
  • 6. H. Hedenmalm, An off-diagonal estimate of Bergman kernels, preprint, 1998.
  • 7. H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Springer-Verlag, New York, to appear.
  • 8. D. Khavinson and H. Shapiro, Invariant subspaces in Bergman spaces and Hedenmalm's boundary value problem, Ark. Math. 32 (1994), 309-321. MR 95m:31003
  • 9. C. Sundberg, Analytic continuability of Bergman inner functions, Michigan Math. J. 44 (1997), 399-407. MR 98h:46022
  • 10. D. Vukotic, A sharp estimate for $A^p$ functions, Proc. Amer. Math. Soc. 123 (1993), 753-756. MR 93d:46042
  • 11. K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990. MR 92c:47031

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 30C40, 46E22, 47A45

Retrieve articles in all journals with MSC (1991): 30C40, 46E22, 47A45


Additional Information

Kehe Zhu
Affiliation: Department of Mathematics, State University of New York, Albany, New York 12222
Email: kzhu@math.albany.edu

DOI: https://doi.org/10.1090/S0002-9939-00-05319-3
Received by editor(s): July 20, 1998
Received by editor(s) in revised form: October 7, 1998
Published electronically: February 29, 2000
Communicated by: Albert Baernstein II
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society