ON SINGULAR CRITICAL POINTS OF POSITIVE OPERATORS IN KREIN SPACES

BRANKO ĆURGUS, AURELIAN GHEONDEA, AND HEINZ LANGER

Abstract. We give an example of a positive operator B in a Krein space with the following properties: the nonzero spectrum of B consists of isolated simple eigenvalues, the norms of the orthogonal spectral projections in the Krein space onto the eigenspaces of B are uniformly bounded and the point ∞ is a singular critical point of B.

An operator A in the Krein space $(\mathcal{K}, [\cdot , \cdot])$ is said to be positive if $[Ax, x] > 0$ for all nonzero x in the domain of A. A bounded positive operator A in the Krein space $(\mathcal{K}, [\cdot , \cdot])$ has a projection valued spectral function E with 0 being its only possible critical point (see [1, Theorem IV.1.5] or [5, Section II.3.]). Recall that, by [5, Proposition 5.6], the condition

\[\|E((-\infty, \alpha])\| \leq C_- < \infty \quad \text{for all } \alpha < 0 \]

is equivalent to the existence of the limit $\lim_{\alpha \to 0} E((-\infty, \alpha])$ in the strong operator topology. Similarly,

\[\|E([\beta, \infty))\| \leq C_+ < \infty \quad \text{for all } \beta > 0 \]

is equivalent to the existence of the limit $\lim_{\beta \to 0} E([\beta, +\infty))$ in the strong operator topology. Since 0 is not an eigenvalue of a positive operator A, [5, Proposition 3.2] implies that (1) and (2) are equivalent. Also, if 0 is a critical point, it is said to be regular if one of the conditions (1) or (2) is fulfilled. If the critical point 0 is not regular, it is called singular.

In the sequel the operator A considered will have a discrete spectrum outside 0. Examples of bounded positive operators in \mathcal{K} having 0 as a singular critical point can be constructed as follows (see also the examples in [2, Section 1], [3], [4]). Consider a sequence of two-dimensional Krein spaces $\mathcal{K}_n = \mathbb{C}^2$ with fundamental symmetry $J_n = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and positive operators A_n in \mathcal{K}_n; denote by λ_n^+ (λ_n^-, respectively) its positive (negative, respectively) eigenvalues and by P_n^+ (P_n^-, respectively) the orthogonal (in \mathcal{K}_n) projection onto the corresponding eigenspace.

Received by the editors October 15, 1998.
2000 Mathematics Subject Classification. Primary 47B50, 46C50.
Key words and phrases. Krein space, definitizable operator, critical point.
The third author was supported by Fonds zur Förderung der wissenschaftlichen Forschung of Austria, Project P 12176 MAT.

©2000 American Mathematical Society
If A_n is chosen such that $\|A_n\| \leq C$ for all n, $\lambda_n^+ \downarrow 0$, $\lambda_n^- \uparrow 0$, $\|P_n\| \to \infty$ if $n \to \infty$, then $A = \bigoplus_{n=1}^{\infty} A_n$ is a bounded positive operator in $\mathcal{K} = \bigoplus_{n=1}^{\infty} \mathcal{K}_n$ having 0 as a singular critical point. Evidently,

$$\sigma(A) = \{\lambda_n^+, \lambda_n^- | n \in \mathbb{N}\} \cup \{0\},$$

and $\|E(\{\lambda_n^\pm\})\| \to \infty$ if $n \to \infty$, that is, the eigenvectors f_n^+, f_n^- of A corresponding to λ_n^+ and λ_n^-, respectively, become arbitrarily close if n is large.

The question arises whether or not 0 can be a singular critical point of a positive operator A in \mathcal{K} with discrete spectrum $\{\lambda_n^+, \lambda_n^- | n \in \mathbb{N}\}$ in $\mathbb{C} \setminus \{0\}$ if the projections $E(\{\lambda_n^\pm\})$ are uniformly bounded. It is the aim of this note to show that the answer is yes: We will construct a bounded positive operator A in a Krein space \mathcal{K}, such that the projections $E(\{\lambda_n^\pm\})$ corresponding to the single eigenvalues are uniformly bounded but, nevertheless,

$$\|E(\{\lambda_1^\pm, \ldots, \lambda_n^\pm\})\| \to \infty, \quad n \to \infty.$$

Our construction is based on the following two lemmas.

Lemma 1. Let \mathcal{H}_n be an n-dimensional vector space with a positive definite scalar product (\cdot, \cdot). Then there exist a basis f_{n1}, \ldots, f_{nn} of \mathcal{H}_n and a positive contraction S_n in \mathcal{H}_n such that

$$0 < 1 \leq \|f_{nk}\| \leq 2, \quad \|S_n^{-1}\| = n, \quad (S_n f_{nj}, f_{nk}) = \delta_{jk}, \quad j, k = 1, \ldots, n.$$

Proof. Let e_{n1}, \ldots, e_{nn} be an orthonormal basis of \mathcal{H}_n, let T_n be the selfadjoint transformation in \mathcal{H}_n given by $T_n e_{n1} = \sqrt{n} e_{n1}$, $T_n e_{nj} = e_{nj}$, $j = 2, \ldots, n$, and put $S_n = T_n^{-2}$. Evidently, S_n is a positive selfadjoint contraction in \mathcal{H}_n, and

$$\min \sigma(S_n) = 1/n.$$

Therefore $\|S_n^{-1}\| = n$. Let $(u_{k1} \ldots u_{kn})$, $k = 1, \ldots, n$, be an orthonormal basis of the n-dimensional space of row vectors with components in \mathbb{C}, such that $u_{1j} = 1/\sqrt{n}$, $j = 1, \ldots, n$. Then $U = (u_{kj})_{k,j=1}^n$ is a unitary matrix with $u_{1j} = 1/\sqrt{n}$, $j = 1, \ldots, n$. Put

$$\phi_{nj} = \sum_{k=1}^n u_{kj} e_{nk}, \quad j = 1, \ldots, n.$$

Then ϕ_{nj}, $j = 1, \ldots, n$, is an orthonormal basis of \mathcal{H}_n and

$$\|T_n \phi_{nj}\|^2 = n \frac{1}{n} + \sum_{k=2}^n |u_{kj}|^2 = 1 + 1 - \frac{1}{n}, \quad j = 1, \ldots, n.$$

Hence $1 \leq \|T_n \phi_{nj}\| \leq 2$. Let $f_{nj} = T_n \phi_{nj}$, $j = 1, \ldots, n$. Then $1 \leq \|f_{nj}\| \leq 2$ and $(S_n f_{nj}, f_{nk}) = (\phi_{nj}, \phi_{nk}) = \delta_{jk}$, $j, k = 1, \ldots, n$. The lemma is proved. \hfill \Box

Lemma 2. Let $(\mathcal{H}, (\cdot, \cdot))$ be a separable Hilbert space and let P be a positive, bounded and boundedly invertible operator in \mathcal{H}. Let ϕ_j, $j \in \mathbb{N}$, be a Riesz basis of \mathcal{H} such that $(P \phi_j, \phi_k) = \delta_{jk}$, $j, k \in \mathbb{N}$, and let $\lambda_j \in \mathbb{C}$, $j \in \mathbb{N}$, be a bounded sequence. Define the operator A in \mathcal{H} by $A \phi_j = \lambda_j \phi_j$, $j \in \mathbb{N}$. Then, A can be extended by continuity to a bounded linear operator in \mathcal{H} such that $\|A\| \leq \sqrt{\|P\| \|P^{-1}\|} \sup \{\lambda_j, \quad j \in \mathbb{N}\}$.

Proof. For a bounded and boundedly invertible positive operator P we have

$$\|P^{-1}||^{-1} (x, x) \leq (Px, x) \leq \|P\| (x, x), \quad x \in \mathcal{H}.$$
Since the vectors $\phi_j, j \in \mathbb{N}$, are orthonormal with respect to the inner product $(P \cdot, \cdot)$, it follows that

$$
(PAx, Ax) \leq (\sup\{ |\lambda_j|, j \in \mathbb{N} \})^2 (Px, x), \quad x \in \mathcal{H}.
$$

Combining (3) and (4) we get

$$
\|Ax\|^2 = (Ax, Ax) \leq \|P^{-1}\| (PAx, Ax) \leq \|P^{-1}\| (\sup\{ |\lambda_j|, j \in \mathbb{N} \})^2 (Px, x)
$$

$$
\leq \|P^{-1}\| \|P\| (\sup\{ |\lambda_j|, j \in \mathbb{N} \})^2 \|x\|^2
$$

and the lemma follows.

\[\square \]

Theorem. There exist a Krein space $(\mathcal{K}, [\cdot, \cdot])$ and a bounded positive operator A in \mathcal{K} with the following properties:

(a) The nonzero spectrum of A consists of isolated simple eigenvalues.

(b) The point 0 is a singular critical point of A.

(c) The norms of the orthogonal projections in the Krein space $(\mathcal{K}, [\cdot, \cdot])$ onto the eigenspaces of A are uniformly bounded.

Proof. With the notation as in Lemma 1, choose $\mathcal{H}^+_n = \mathcal{H}^-_n = \mathcal{H}_n$. Let $\mathcal{K}_n = \mathcal{H}^+_n \oplus \mathcal{H}^-_n$ be the direct sum of the Hilbert spaces $(\mathcal{H}^+_n, \cdot, \cdot)$. The positive definite inner product on \mathcal{K}_n is also denoted by \cdot, \cdot. All norms in \mathcal{K}_n correspond to this inner product. Endow $\mathcal{K}_n = \mathcal{H}^+_n \oplus \mathcal{H}^-_n$ with the indefinite inner product $[\cdot, \cdot]$ given by the fundamental symmetry $J_n = \begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix}$. Consider the operator $K^+_n = (I_n - S_n)^{1/2}$ acting from \mathcal{H}^+_n into \mathcal{H}^-_n as an angular operator in \mathcal{K}_n. Here S_n is the operator constructed in Lemma 1. Let \mathcal{L}^+_n be the graph of K^+_n in $\mathcal{K}_n = \mathcal{H}^+_n \oplus \mathcal{H}^-_n$. Then \mathcal{L}^+_n is an n-dimensional maximal positive subspace in \mathcal{K}_n. It is spanned by the vectors $f^+_{nk} = \begin{pmatrix} f_{nk} \\ K^+_n f_{nk} \end{pmatrix}$, $k = 1, \ldots, n,$ and

$$
[f^+_{nk}, f^+_{nj}] = (f_{nk}, f_{nj}) - (K^+_n f_{nk}, K^+_n f_{nj}) = (S_n f_{nk}, f_{nj}) = \delta_{kj},
$$

$$
\|f^+_{nk}\|^2 = \|f_{nk}\|^2 + \|K^+_n f_{nk}\|^2 \leq 2 \|f_{nk}\|^2 \leq 8.
$$

Denote by \mathcal{L}^-_n the orthogonal complement of \mathcal{L}^+_n in the Krein space \mathcal{K}_n. Then \mathcal{L}^-_n is a maximal negative subspace of \mathcal{K}_n. The operator $K^-_n = (I_n - S_n)^{1/2}$, acting from \mathcal{H}^-_n into \mathcal{H}^+_n, is the angular operator of \mathcal{L}^-_n. The subspace \mathcal{L}^-_n is spanned by the vectors $f^-_{nk} = \begin{pmatrix} K^-_n f_{nk} \\ I_n f_{nk} \end{pmatrix}$, $k = 1, \ldots, n$. This follows from the linear independence of f_1, \ldots, f_n and the relation

$$
[f^-_{nj}, f^-_{nk}] = (f_{nj}, K^-_n f_{nk}) - (K^+_n f_{nj}, f_{nk})
$$

$$
= (f_{nj}, (I - S_n)^{1/2} f_{nk}) - ((I - S_n)^{1/2} f_{nj}, f_{nk}) = 0.
$$

The decomposition $\mathcal{K}_n = \mathcal{L}^+_n \oplus \mathcal{L}^-_n$ is a fundamental decomposition of $(\mathcal{K}_n, [\cdot, \cdot])$. Solving a corresponding system of vector equations we find that the orthogonal (fundamental) projections Q^+_n of the Krein space \mathcal{K}_n onto \mathcal{L}^+_n are given by

$$
Q^+_n = \begin{pmatrix} I_n \\ K^+_n \end{pmatrix} S_n^{-1} (I_n - K^-_n), \quad Q^-_n = \begin{pmatrix} K^-_n \\ I_n \end{pmatrix} S_n^{-1} (I_n - K^+_n). \nonumber
$$

From Lemma 1 it follows that $\|S_n^{-1}\| = n$. This and the above matrix representations of Q^+_n imply that

$$
n \leq \|Q^+_n\| \leq 2n.
$$
Consequently, for any $f \in \mathcal{K}_n$ we have

$$\|Q_n^+ f\| \leq 2n\|f\|.$$

It follows from (5) that the vectors $f_{n1}^+, \ldots, f_{nn}^+$ form an orthonormal basis in the Hilbert space $(\mathcal{L}_n^+, [\cdot, \cdot])$. Denote by

$$P_{nk}^+ = \frac{[\cdot, f_{nk}^+] [f_{nk}^+, \cdot]}{[f_{nk}^+, f_{nk}^+]^+}, \quad k = 1, \ldots, n,$$

the orthogonal projection in the Krein space \mathcal{K}_n onto the subspace spanned by the vector $f_{nk}^+, k = 1, \ldots, n$. Then, by (5) and (10),

$$1 \leq \|P_{nk}^+\| = \frac{\|f_{nk}^+\|^2}{[f_{nk}^+, f_{nk}^+]^+} \leq 8, \quad k = 1, \ldots, n. \tag{9}$$

Further, the operator

$$J_{n1} := Q_n^+ - Q_n^-$$

is a fundamental symmetry in $(\mathcal{K}_n, [\cdot, \cdot])$. In particular, the inner product

$$(x, y)_1 := [J_{n1} x, y], \quad x, y \in \mathcal{K}_n,$$

is positive definite. Therefore, the operator $J_n J_{n1}$ is positive and invertible in the Hilbert space $(\mathcal{K}_n, (\cdot, \cdot))$. Note also that $J_{n1} = J_{n1}^{-1}$. It follows from (8) that

$$\|J_{n1}\| = \|J_{n1}^{-1}\| \leq \|Q_n^+\| + \|Q_n^-\| \leq 4n. \quad \text{Consequently,}$$

$$\|J_n J_{n1}\| = \|(J_n J_{n1})^{-1}\| \leq 4n. \tag{10}$$

The vectors f_{nj}^+, f_{nk}^-, $j, k = 1, \ldots, n$, are orthonormal in $(\mathcal{K}_n, (\cdot, \cdot))$. This follows from (5), (7) and the relation

$$\langle f_{nj}^+, f_{nk}^- \rangle_1 = \langle (Q_n^+ - Q_n^-) f_{nj}^+, f_{nk}^- \rangle = \langle Q_n^+ f_{nj}^+, f_{nk}^- \rangle = \langle f_{nj}^+, f_{nk}^- \rangle = 0.$$

Now we can apply Lemma 2 to the vectors f_{nj}^+, f_{nk}^-, $j, k = 1, \ldots, n$, and the positive operator $J_n J_{n1}$: For given $\lambda_1^+, \ldots, \lambda_n^+ \in \mathbb{C}$ define an operator A_n by

$$A_n f_{nj}^\pm = \lambda_{nj}^\pm f_{nj}^\pm, \quad j = 1, \ldots, n,$$

and then extend it by linearity to \mathcal{K}_n. It follows from Lemma 2 and (10) that

$$\|A_n\| \leq 4n \max\{|\lambda_j^\pm|, \quad j = 1, \ldots, n\} \leq 4C. \tag{11}$$

Let \mathcal{K} be the Krein space which is the direct orthogonal sum of the Krein spaces \mathcal{K}_n, $n \in \mathbb{N}$,

$$\mathcal{K} := \bigoplus_{n=1}^{\infty} \mathcal{K}_n.$$

The vectors f_{nj}^\pm, $j = 1, \ldots, n, n \in \mathbb{N}$, constructed above are considered as elements of \mathcal{K} and the Krein spaces \mathcal{K}_n, $n \in \mathbb{N}$, are considered as mutually orthogonal subspaces of \mathcal{K}. The vectors f_{nj}^\pm, $j = 1, \ldots, n$, form a basis for \mathcal{K}_n. Let λ_{nj}^\pm, $j = 1, \ldots, n$, be distinct real numbers such that $\pm \lambda_{nj}^+ > 0$, $j = 1, \ldots, n$, and such that there exists a constant C with

$$n \max\{|\lambda_{nj}^\pm|, \quad j = 1, \ldots, n\} \leq C \tag{12}$$

for all $n \in \mathbb{N}$.
Put

\[A := \bigoplus_{n=1}^{\infty} A_n. \]

Then \(A \) is a positive operator in the Krein space \((\mathcal{K}, [\cdot, \cdot])\), and from (11) and (12) we get \(\|A\| \leq 4C \). Since the linear span of the vectors \(f_{n,j} \), \(j = 1, \ldots, n \), \(n \in \mathbb{N} \), is dense in \(\mathcal{K} \), it follows from the spectral theorem (see [1, Theorem IV.1.5] or [5, Theorem 3.1]) that the nonzero spectrum of \(A \) consists of the simple eigenvalues \(\lambda_{n,j}^\pm, j = 1, \ldots, n \), \(n \in \mathbb{N} \). Consequently, the left-hand side of the inequality (8) implies that 0 is a singular critical point of \(A \) and the right-hand side of the inequality (9) implies that the norms of the orthogonal projections in \((\mathcal{K}, [\cdot, \cdot])\) onto the eigenspaces of \(A \) are uniformly bounded by 8. The theorem is proved.

Remark. We can arrange the numbers \(\lambda_{n,j}^\pm, j = 1, \ldots, n \), \(n \in \mathbb{N} \), in an lower triangular table. Also, we can put the sequence \(\{\frac{1}{m}, m \in \mathbb{N}\} \) in a lower triangular table by ending each row with a triangular number \(\frac{n(n+1)}{2} \) in the denominator. A comparison of these two tables leads to

\[\lambda_{n,j}^\pm := \pm \left(\frac{n(n-1)}{2} + j \right)^{-1}, \quad j = 1, \ldots, n, \quad n \in \mathbb{N}. \] (13)

In this way we get

\[\{\lambda_{n,j}^\pm, j = 1, \ldots, n, \quad n \in \mathbb{N}\} = \left\{ \pm \frac{1}{m}, \quad m \in \mathbb{N} \right\}. \]

The numbers \(\lambda_{n,j}^\pm \) in (13) satisfy (12) with \(C = 2 \). The proof of the Theorem implies that the nonzero spectrum of the operator \(A \), which was constructed by means of the numbers \(\lambda_{n,j}^\pm \) from (13), consists of the simple eigenvalues \(\pm \frac{1}{m}, \quad m \in \mathbb{N} \).

If we consider the inverse \(B = A^{-1} \) of the operator \(A \) from the previous theorem and with the specific choice of numbers \(\lambda_{n,j}^\pm \) as in the Remark, we get:

Corollary. There exist a Krein space \((\mathcal{K}, [\cdot, \cdot])\) and an unbounded positive operator \(B \) in \(\mathcal{K} \) with the following properties:

(a) The nonzero spectrum of \(B \) consists of isolated simple eigenvalues.

(b) The point \(\infty \) is a singular critical point of \(B \).

(c) For each positive number \(\mu \) we have

\[\|E([a,b])\| \leq 8|\mu| \quad \text{whenever} \quad b - a < \mu, \]

where \(E \) is the spectral function of \(B \) and \(|\mu| \) denotes the largest integer smaller than \(\mu \).

Proof. Let \(A \) be the operator defined in the proof of the Theorem with the specific choice of the numbers \(\pm \lambda_{n,j} \) as in the Remark. Then \(B = A^{-1} \) is a positive operator with a nonempty resolvent set (see e.g. [5, Proposition 3.1]), and \(\sigma(B) = \mathbb{Z} \setminus \{0\} \). Let \(\mu > 0 \) be arbitrary and let \(0 < b - a < \mu \). Then the interval \([a,b])\) contains at most \(|\mu| \) eigenvalues of \(B \). Therefore, \(\|E([a,b])\| \leq 8|\mu| \). \(\square \)
REFERENCES

DEPARTMENT OF MATHEMATICS, WESTERN WASHINGTON UNIVERSITY, BELLINGHAM, WASHINGTON 98225
E-mail address: curgus@cc.wwu.edu

INSTITUTUL DE MATEMATICĂ AL ACADEMIEI ROMÂNÉ, C.P. 1-764, 70700 BUCUREȘTI, ROMÂNIA
E-mail address: gheondea@imar.ro

INSTITUTE FOR ANALYSIS, VIENNA TECHNICAL UNIVERSITY, WIEDNER HAUPTSTRASSE 8-10, A-1040 VIENNA, AUSTRIA
E-mail address: hlanger@email.tuwien.ac.at