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Abstract. Systems of linear differential equations with constant coefficients,
as well as Lotka–Volterra equations, with delays in the off–diagonal terms are

considered. Such systems are shown to be asymptotically stable for any choice
of delays if and only if the matrix has a negative weakly dominant diagonal.

1. Introduction

Consider a system of retarded linear differential equations with constant coeffi-
cients of the form

ẋi =
n∑
j=1

aijxj(t− τij), for i = 1, . . . , n,(1.1)

with

τij ≥ 0 for 1 ≤ i 6= j ≤ n and τii = 0 for i = 1, . . . , n.(1.2)

This paper deals with the following question:

(*) For which matrices A = (aij) is the trivial solution x = 0 of (1.1) asymptoti-
cally stable for any choice of delays satisfying (1.2)?

Such type of stability has been referred to as ‘absolute stability’ in the literature
(cf. El’sgol’ts and Norkin [3, p. 175]). In the context of population modelling,
the term ‘harmless’ delays has also been used (see Gopalsamy [5]). For n = 2,
this question was answered by Lu and Wang [12]. They showed that (*) holds iff
a11, a22 < 0 and a11a22 > |a12a21| (with equality allowed in the latter if a12a21 < 0).
Actually, their result was for Lotka–Volterra equations but the proof applies to (1.1)
with minor modifications. We extend this result to arbitrary n, both for the linear
case (1.1) and the Lotka–Volterra case (3.1).

Definition. Let Ã = (ãij) be the matrix with entries ãii = aii and ãij = |aij | for
i 6= j. A is said to be weakly diagonally dominant if all the principal minors of −Ã
are non–negative.

Received by the editors October 23, 1998.
1991 Mathematics Subject Classification. Primary 34K20.
This research was partially supported by NSERC of Canada, grant number OGP36475.

c©2000 American Mathematical Society

2675



2676 JOSEF HOFBAUER AND JOSEPH W.-H. SO

Our main result is the following.

Theorem 1. (1.1) is asymptotically stable for all choices of delays of the form
(1.2) if and only if aii < 0 for i = 1, . . . , n, detA 6= 0 and A is weakly diagonally
dominant.

For quasimonotone matrices A (i.e., aij ≥ 0 for i 6= j), a similar result was
obtained by Győri (1992).

2. Proof of Theorem 1

The characteristic equation of the delay differential equation (1.1) is given by

det

 a11 − λ a12e
−λτ12 · · ·

a21e
−λτ21 a22 − λ · · ·

· · ·

 = 0.(2.1)

Since x(t) = ceλt is a solution of (1.1) for suitable c 6= 0 iff λ satisfies (2.1), by
Corollary 6.1 of Hale and Verduyn Lunel [7, p. 215], the trivial solution x = 0 of
(1.1) is asymptotically stable iff all the roots of (2.1) have negative real part.

2.1. Sufficiency part.

Lemma 1. If A is weakly diagonally dominant, then all roots of (2.1) have negative
real part, with the possible exception of λ = 0.

Proof. We first consider irreducible matrices A. By Theorem 5.9 of Fiedler [4,
p. 124], for an irreducible weakly diagonally dominant matrix A, there is a c > 0
such that Ãc ≤ 0, i.e., there exist ci > 0 such that

aiici +
∑
j 6=i
|aij |cj ≤ 0 for all i = 1, . . . , n.(2.2)

Suppose, for some set of delays τij satisfying (1.2), there exists a root λ of (2.1) with
Reλ ≥ 0. Then λ is an eigenvalue of the matrix B = (bij), where bij = aije

−λτij .
Since bii = aii ≤ 0 and |bij | ≤ |aij |, (2.2) implies

biici +
∑
j 6=i
|bij |cj ≤ 0 for i = 1, . . . , n.

Applying Geršgorin’s theorem (cf. Lancaster and Tismenetsky [10, p. 371]) to the
matrix B̂ = (c−1

i bijcj), which is similar to B, we know that the eigenvalue λ of B̂
is contained in a circle with center bii ≤ 0 and radius at most |bii| (for some i).
Hence either Reλ < 0 or λ = 0.

In the case of a reducible matrix A, we can (by suitably relabeling the indices)
turn A into an upper block triangular matrix with irreducible (or zero) blocks along
the diagonal (cf. (3.6) of Berman and Plemmons [2, p. 39]). Since index relabeling
is done via a permutation matrix and does not affect the principal minors of A,
each diagonal block is itself weakly diagonally dominant. The result now follows
by applying the previous argument to each irreducible diagonal block.

The solution λ = 0 of (2.1) is possible only if detA = 0 which is excluded. This
concludes the proof of the sufficiency part of Theorem 1.
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2.2. Necessity part. We start with three lemmas.

Lemma 2. If aii < 0 for all i = 1, . . . , n and det(−Ã) < 0, then there exist delays
τij satisfying (1.2) such that (2.1) has a root λ with Reλ > 0.

Proof. Consider the function

Fε(z) = det

 a11 − zε a12e
−zη12 · · ·

a21e
−zη21 a22 − zε · · ·

· · ·


where

ηij =


1
2
, for aij < 0,

1, for aij ≥ 0.

For z = x+ 2πi, where x is real, F0(z) becomes

D(x) = det

 a11 |a12|e−xη12 · · ·
|a21|e−xη21 a22 · · ·

· · ·

 .

By assumption, (−1)nD(0) = det(−Ã) < 0, and (−1)nD(∞) = (−1)na11 . . . ann
> 0. Hence, by intermediate value theorem, there exists x̂ > 0 such that D(x̂) = 0
and ẑ = x̂ + 2πi is a zero of F0. It follows from Rouché’s theorem (cf. Ahlfors
[1, p. 153]) that the analytic function Fε has a zero ẑ(ε) near ẑ for small ε > 0.
Clearly, λ = ẑ(ε)ε and τij = ηij

ε satisfy (2.1), with Reλ > 0.

Lemma 3. Let f(λ) be a real polynomial of degree n with n real zeros, including
0. Then the equation

f(λ) = e−λτ(2.3)

has a solution λ with Reλ > 0 for some τ > 0.

Proof. Write f(λ) as α
∏n
i=1(λ−λi), where 0 6= α ∈ R and λi ∈ R with λ1 = 0. We

first show (2.3) has a purely imaginary root λ = iω, where ω > 0, for some τ > 0.
By suitably choosing τ > 0, f(iω) = e−iωτ holds iff |f(iω)| = 1. Since |f(0)| = 0
and limω→∞ |f(iω)| = ∞, the existence of ω > 0 follows from the intermediate
value theorem. Let f(λ̂) = e−λ̂τ̂ , where λ̂ = iω̂ and ω̂, τ̂ > 0.

Next, we show that by slightly increasing τ past τ̂ , the solution λ crosses the
imaginary axis. Indeed, let g(λ, τ) = f(λ)− e−λτ . Then

gλ(λ̂, τ̂ ) = e−λ̂τ̂

[
n∑
i=1

1

λ̂− λi
+ τ̂

]
6= 0,

since

Im

(
n∑
i=1

1

λ̂− λi

)
= −ω̂

n∑
i=1

1
λ2
i + ω̂2

< 0.

The implicit function theorem applied to (2.3) at (λ̂, τ̂) yields the solution

λ(τ) = λ̂+ c(τ − τ̂ ) +O((τ − τ̂ )2)(2.4)

where c = − gτ (λ̂,τ̂)

gλ(λ̂,τ̂)
. It is easy to see that Re c > 0, and hence Reλ(τ) > 0 for

τ > τ̂ .
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Lemma 4. If aii = 0 for some i and detA 6= 0, then there exist delays τij satisfying
(1.2) such that (2.1) has a root λ with Reλ > 0.

Proof. Assume a11 = 0. Since detA 6= 0, there exists a non–zero term in the
expansion of detA, i.e. there is a permutation σ of {1, . . . , n} such that

∏n
i=1 aiσi 6=

0. The corresponding term in the expansion of (2.1) together with the product of
the diagonal entries yields the ‘truncated’ equation

n∏
i=1

(aii − λ) + sgn(σ)
n∏
i=1

(aiσi − λδiσi ) · e−λ
∑n
i=1 τiσi = 0.(2.5)

After cancelling the factor aii−λ (for each i with σi = i), there remains an equation
of the form (2.3), where τ =

∑n
i=1 τiσi . By Lemma 3, there is a solution λ̂ of (2.5)

with Re λ̂ > 0 for a suitable τ > 0. By letting τij →∞ whenever j 6= i and j 6= σi,
the remaining n! − 2 terms in the expansion of (2.1) left out in (2.5) can be made
arbitrarily small (in a fixed neighbourhood of λ̂). Hence Rouché’s theorem again
shows the existence of a root λ of (2.1) near λ̂. This shows the lemma.

Returning to the proof of the sufficiency part, the asymptotic stability assump-
tion on x = 0 precludes λ = 0 from being a root of (2.1). Hence detA 6= 0.

If akk > 0 for some k, then Rouché’s theorem shows that (2.1) has a root near
akk for large τij . This contradiction together with Lemma 4 shows that aii < 0 for
all i = 1, . . . , n.

Now suppose that some principal minor of −Ã is negative. Without loss of gen-
erality, we may assume det(−Ãk) < 0, where Ak = (aij)1≤i,j≤k. Applying Lemma
2 to this principal submatrix yields a root λ̂ with Re λ̂ > 0 for the characteristic
equation (2.1) corresponding to Ak. By letting τij →∞ whenever i > k or j > k, a
similar perturbation argument as above shows that the full characteristic equation
(2.1) (corresponding to A) has a root near λ̂. In particular, (2.1) will have a root
with positive real part, which contradicts the assumption of stability of x = 0. This
completes the proof of Theorem 1.

3. Lotka–Volterra equations

In this section we prove a similar result for a class of nonlinear differential equa-
tions, widely used in population dynamics, the Lotka–Volterra systems

ẏi = yi

ri +
n∑
j=1

aijyj(t− τij)

 , i = 1, . . . , n.(3.1)

We assume in the following that there exists a positive vector ŷ with

r +Aŷ = 0.(3.2)

This ŷ is then an equilibrium for (3.1), i.e., y(t) = ŷ is a (constant) solution of
(3.1).

We are interested in the absolute stability of ŷ; and we will show that this is the
case under the same conditions on A as in the linear case (1.1). That the strict
version of diagonal dominance (all principal minors of −Ã are positive) implies the
global stability of the unique saturated equilibrium has been discussed in detail in
Hofbauer and Sigmund [8] for ordinary Lotka–Volterra equations and in Kuang [9]
for delayed versions like (3.1). That weak diagonal dominance is already sufficient
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is more subtle, and its proof uses ideas from Lu and Takeuchi [11], Lu and Wang
[12] and Redheffer [13].

Theorem 2. Suppose there exists a positive vector ŷ satisfying (3.2). Then ŷ is
globally asymptotically stable for (3.1) (for initial conditions yi(0) > 0) for all
delays τij satisfying (1.2) if and only if aii < 0 for i = 1, . . . , n, detA 6= 0 and A
is weakly diagonally dominant.

Proof. For the necessity part, first we observe that in the course of proving The-
orem 1, we have shown that, under the assumption det(A) 6= 0, the characteristic
equation (2.1) has a root with positive real part (for a certain choice of τij satisfying
(1.2)), provided aii ≥ 0 for some i or A is not weakly diagonally dominant. Next,
let B = (ŷiaij) be the linearization of (3.1) at ŷ. Then det(B) 6= 0, because other-
wise det(A) = 0 and (3.1) has many equilibrium solutions near ŷ (implying ŷ is not
asymptotically stable). Now, since ŷ is asymptotically stable, none of the roots of
(2.1), with A replaced by B, can have positive real parts (cf. Theorem 2.1 of Hale
and Verduyn Lunel [7, p. 314]). Hence, bii < 0 for all i and B is weakly diagonally
dominant. This implies aii < 0 for all i and A is weakly diagonally dominant as
well.

For the sufficiency part, the proof in section 2 only gives (local) asymptotic
stability. When A is irreducible, it turns out that one can choose αi > 0 and
βij > 0 appropriately (see later) so that

V (y(.), t) =
n∑
i=1

αi
(
yi(t)− ŷi log yi(t)

)
+

n∑
i,j=1

βij

∫ t

t−τij
(yj(s)− ŷj)2ds(3.3)

becomes a Lyapunov functional. For the case of a general A, we will use induction
to show that every solution y(t) of (3.1) with positive initial conditions converges
to ŷ.

Denoting y − ŷ by x, (3.1) can be written as

ẏi(t) = yi(t)
n∑
j=1

aijxj(t− τij).(3.4)

The derivative of V along a solution y(t) of (3.1) is then given by

V̇ =
n∑

i,j=1

αixi(t)aijxj(t− τij) +
n∑

i,j=1

βij
[
x2
j(t)− x2

j (t− τij)
]
.

First, we assume that A is an irreducible weakly diagonally dominant matrix.
Then there exist ci > 0 such that (2.2) holds. Moreover, there also exist di > 0
such that

diaii +
∑
j 6=i

dj |aji| ≤ 0 for i = 1, . . . , n.(3.5)

(The vectors c and d may be chosen as right and left eigenvectors of Ã.)
By choosing αi = 2 dici and βij = di

cj
|aij |, we have

V̇ =
∑
i6=j

di
cj
|aij |x2

j (t) + 2
n∑

i,j=1

di
ci
aijxi(t)xj(t− τij)−

∑
i6=j

di
cj
|aij |x2

j(t− τij).(3.6)
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After collecting terms, the coefficient of x2
i (t) (for i fixed) is given by

n∑
j=1, j 6=i

dj
ci
|aji|+ 2

di
ci
aii.

By adding 1
ci

times (3.5) to di
c2i

times (2.2), we see that this coefficient is no larger

than −
∑n
j=1, j 6=i

dicj
c2i
|aij |. Hence (3.6) reduces to

V̇ ≤ −
∑
i6=j

di
cj
|aij |

(
cj
ci
xi(t) sgn aij − xj(t− τij)

)2

≤ 0.(3.7)

The boundedness of V along a positive solution y(t) implies the existence of con-
stants m,M > 0 such that m ≤ yi(t) ≤M for all i and for all t ≥ 0. Hence forward
orbits are precompact and the ω–limit set exists and is nonempty, compact and
invariant (cf. Lemma 1.3 of Hale and Verduyn Lunel [7, p. 103]). By LaSalle’s
theorem, ω(y(.)) is contained in the maximal compact invariant subset of V̇ = 0.

Equality V̇ ≡ 0 is possible for y(.) 6≡ ŷ only if there is equality in (2.2) and (3.5)
(i.e., det Ã = 0) and xj(t−τij) = cj

ci
xi(t) sgnaij holds for all t and all i, j with i 6= j

and aij 6= 0. Inserting this into (3.1), we obtain

ẏi=yi

aiixi(t)+
n∑

j=1, j 6=i
aijxj(t− τij)

=yi

aiixi(t)+
n∑

j=1, j 6=i
|aij |

cj
ci
xi(t)

=0.

Hence y(t) must be a constant solution of the differential equation (3.1). Since
detA 6= 0 by assumption, x(t) ≡ 0, i.e. y(t) ≡ ŷ is the only positive constant
solution of (3.1). Thus {ŷ} is the global attractor and hence the maximal compact
invariant subset in C([−τ, 0], intRn+), the space of positive continuous functions on
[−τ, 0], where τ = maxi,j{τi,j}. In particular, every positive solution y(t) of (3.1)
converges to ŷ as t→∞, when A is irreducible.

Next, we consider the case of a general A. We will use induction on n to show
that (i) for any positive solution y(t) (t ≥ 0) of (3.1), there exist 0 < m ≤M such
that m ≤ yi(t) ≤ M for all t ≥ 0 and i, and that limt→∞ y(t) = ŷ and (ii) if y(t)
is a positive solution (3.1) defined for all t ∈ R such that m ≤ yi(t) ≤ M for all t,
where 0 < m ≤M , then y(t) ≡ ŷ.

If A is irreducible, then the assertions hold by the above Lyapunov functional
argument. So we assume A is reducible. By a renumbering of indices, A can be

written in block triangular form A =
(
A11 A12

O A22

)
, with A11 irreducible of order

k. The delay equation (3.1) can then be written schematically as a 2× 2 system

Ẏ1 = Y1(A11X1 +A12X2),

Ẏ2 = Y2A22X2.
(3.8)

Since the order n−k ofA22 is strictly less than that ofA, by the induction hypothesis
on the second half of (3.8), we can assume that yi(t) remains bounded (both from 0
and∞) for all i = k+1, . . . , n and t ≥ 0 and Y2(t)→ Ŷ2 = (ŷk+1, . . . , ŷn) as t→∞.
From the linear analysis of section 2, we can further infer that |X2(t)| ≤ Ce−εt

(t ≥ 0) for suitable constants C, ε > 0.
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Now consider again the function V from (3.3), with n replaced by k, the size of
the irreducible block A11. Then a similar computation, taking into account (3.7)
for the terms arising from A11, leads to (with |X1| denoting the norm of the vector
X1 = (x1, . . . xk))

V̇ ≤
k∑
i=1

αixi(t)

 n∑
j=k+1

aijxj(t− τij)


≤ C1|X1(t)|e−εt ≤ C2(V (t) + C3)e−εt.

This differential inequality shows that V (t) stays bounded as t → ∞; and hence
the first k components of y(t) stay bounded (both from 0 and from∞). This shows
that there exist 0 < m ≤M such that m ≤ yi(t) ≤M for all i = 1, . . . , n and t ≥ 0.

Now consider a (full) solution y(t) = (Y1(t), Y2(t)) of (3.1) defined for all t ∈ R
such that m ≤ yi(t) ≤ M for all i and t, where 0 < m ≤ M . Applying the
induction hypothesis to the second part of (3.8), we deduce that Y2(t) ≡ Ŷ2. Thus
X2(t) ≡ 0. Hence Y1(t) satisfies Ẏ1 = Y1A11X1. Since A11 is irreducble, we conclude
Y1(t) ≡ Ŷ1. Hence y(t) ≡ ŷ.

Lastly, let y(t) (t ≥ 0) be a positive solution of (3.1). Pick any zt, a full orbit in
ω(yt), the ω–limit set of the orbit yt. Then z(t) is a solution of (3.1) defined for all
t ∈ R which is bounded (from 0 and∞). As was shown in the previous paragraph,
z(t) ≡ ŷ. Hence ω(yt) = {ŷ} and limt→∞ y(t) = ŷ, which completes the induction
proof.

Remark. We note that the sufficiency part for the linear case (Theorem 1) can also
be shown by basically the same argument as above, using the Lyapunov function
V (x(.), t) =

∑n
i=1 αix

2
i (t) +

∑n
i,j=1 βij

∫ t
t−τij x

2
j (s) ds instead of (3.3).
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