Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Holomorphic sections of pre-quantum line bundles on $G/(P,P)$


Author: Meng-Kiat Chuah
Journal: Proc. Amer. Math. Soc. 128 (2000), 2795-2799
MSC (2000): Primary 22E10, 53D50
DOI: https://doi.org/10.1090/S0002-9939-00-05636-7
Published electronically: February 29, 2000
MathSciNet review: 1709745
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

Let $G=KAN$ be the Iwasawa decomposition of a complex connected semi-simple Lie group $G$. Let $P \subset G$ be a parabolic subgroup containing $AN$, and let $(P,P)$ be its commutator subgroup. In this paper, we characterize the $K$-invariant Kähler structures on $G/(P,P)$, and study the holomorphic sections of their corresponding pre-quantum line bundles.


References [Enhancements On Off] (What's this?)

  • 1. M.K. CHUAH, $K$-invariant Kaehler structures on $K_{\mathbf{C}}/N$ and the associated line bundles, Proc. Amer. Math. Soc. 124 (1996), 3481-3491. MR 97a:32034
  • 2. M.K. CHUAH, The generalized Borel-Weil theorem and cohomology of $G/(P,P)$, Indiana Univ. Math. J. 46 (1997), 117-131. MR 98d:22013
  • 3. M.K. CHUAH, Kaehler structures on $K_{\mathbf{C}}/(P,P)$, Trans. Amer. Math. Soc. 349 (1997), 3373-3390. MR 97k:22016
  • 4. M.K. CHUAH, Holomorphic sections of pre-quantum line bundles on $G/N$, Michigan Math. J. 45 (1998), 375-385. MR 99j:32031
  • 5. V. GUILLEMIN AND S. STERNBERG, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), 515-538. MR 83m:58040
  • 6. V. GUILLEMIN AND S. STERNBERG, Symplectic techniques in physics, Cambridge U. Press, Cambridge 1984. MR 86f:58054
  • 7. A. KNAPP, Representation theory of semisimple groups, Princeton U. Press, Princeton 1986. MR 87j:22022
  • 8. B. KOSTANT, Quantization and unitary representations, Springer Lecture Notes in Math. 170 (1970), 87-208. MR 45:3638

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 22E10, 53D50

Retrieve articles in all journals with MSC (2000): 22E10, 53D50


Additional Information

Meng-Kiat Chuah
Affiliation: Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan
Email: chuah@math.nctu.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-00-05636-7
Keywords: K\"{a}hler, Lie group, line bundle
Received by editor(s): October 15, 1998
Published electronically: February 29, 2000
Additional Notes: This research was supported in part by the NSC of Taiwan, Contract NSC 88-2115-M-009020
Communicated by: Roe Goodman
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society