Mixed means and inequalities of Hardy

and Levin-Cochran-Lee type

for multidimensional balls

Authors:
Aleksandra Cizmesija, Josip Pecaric and Ivan Peric

Journal:
Proc. Amer. Math. Soc. **128** (2000), 2543-2552

MSC (2000):
Primary 26D10, 26D15

Published electronically:
December 7, 1999

MathSciNet review:
1676291

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Integral means of arbitrary order, with power weights and their companion means, where the integrals are taken over balls in centered at the origin, are introduced and related mixed-means inequalities are derived. These relations are then used in obtaining Hardy and Levin-Cochran-Lee inequalities and their companion results for -dimensional balls. Finally, the best possible constants for these inequalities are obtained.

**1.**Michael Christ and Loukas Grafakos,*Best constants for two nonconvolution inequalities*, Proc. Amer. Math. Soc.**123**(1995), no. 6, 1687–1693. MR**1239796**, 10.1090/S0002-9939-1995-1239796-6**2.**James A. Cochran and Cheng Shyong Lee,*Inequalities related to Hardy’s and Heinig’s*, Math. Proc. Cambridge Philos. Soc.**96**(1984), no. 1, 1–7. MR**743695**, 10.1017/S0305004100061879**3.**A. \v{C}i\v{z}me\v{s}ija and J. Pe\v{c}ari\'{c},*Mixed means and Hardy's inequality*, Math. Inequal. Appl.**1**, No. 4 (1998), 497-506. CMP**99:02****4.**Pavel Drábek, Hans P. Heinig, and Alois Kufner,*Higher-dimensional Hardy inequality*, General inequalities, 7 (Oberwolfach, 1995) Internat. Ser. Numer. Math., vol. 123, Birkhäuser, Basel, 1997, pp. 3–16. MR**1457264****5.**G. H. Hardy, J. E. Littlewood, and G. Pólya,*Inequalities*, Cambridge, at the University Press, 1952. 2d ed. MR**0046395**

G. H. Hardy, J. E. Littlewood, and G. Pólya,*Inequalities*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition. MR**944909****6.**V. Levin,*O neravenstvah III: Neravenstva, vypolnjaemie geometri\v{c}eskim srednim neotricatel'noi funkcii*, Math. Sbornik 4 (**46**) (1938), 325-331.**7.**E. R. Love,*Inequalities related to those of Hardy and of Cochran and Lee*, Math. Proc. Cambridge Philos. Soc.**99**(1986), no. 3, 395–408. MR**830353**, 10.1017/S0305004100064343**8.**D. S. Mitrinović, J. E. Pečarić, and A. M. Fink,*Inequalities involving functions and their integrals and derivatives*, Mathematics and its Applications (East European Series), vol. 53, Kluwer Academic Publishers Group, Dordrecht, 1991. MR**1190927****9.**Gou Sheng Yang and Yü Jên Lin,*On companion inequalities related to Heinig’s*, Tamkang J. Math.**22**(1991), no. 4, 313–322. MR**1143519**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
26D10,
26D15

Retrieve articles in all journals with MSC (2000): 26D10, 26D15

Additional Information

**Aleksandra Cizmesija**

Affiliation:
Department of Mathematics, University of Zagreb, Bijeničkacesta 30, 10000 Zagreb, Croatia

Email:
cizmesij@math.hr

**Josip Pecaric**

Affiliation:
Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

Email:
pecaric@mahazu.hazu.hr

**Ivan Peric**

Affiliation:
Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia

DOI:
http://dx.doi.org/10.1090/S0002-9939-99-05408-8

Keywords:
Mixed means,
Hardy inequality,
Levin--Cochran--Lee inequality

Received by editor(s):
September 28, 1998

Published electronically:
December 7, 1999

Communicated by:
Christopher D. Sogge

Article copyright:
© Copyright 2000
American Mathematical Society