Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On reflexivity of direct sums


Authors: V. P. Camillo and K. R. Fuller
Journal: Proc. Amer. Math. Soc. 128 (2000), 2855-2862
MSC (1991): Primary 16D20, 16G99, 16P10; Secondary 47A15
DOI: https://doi.org/10.1090/S0002-9939-00-05331-4
Published electronically: April 28, 2000
MathSciNet review: 1664341
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

Necessary and sufficient conditions are presented to insure that the direct sum of two reflexive representations of a finite dimensional algebra is reflexive, and it is shown that for each such algebra, there is an integer $ k $ such that the direct sum of $k$ copies of each of its representations is reflexive. Given a ring $\Delta ,$ our results are actually presented in the more general setting of $\Delta $-representations of a ring $R.$


References [Enhancements On Off] (What's this?)

  • 1. F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Second Edition, GTM 13 Springer-Verlag, 1992. MR 94i:16001
  • 2. E.A. Azoff, $k$-reflexivity in finite dimensional spaces, Duke Math. J. 40 (1973), 821-830. MR 48:9415
  • 3. E.A. Azoff and M. Ptak, On rank $2$ linear transformations and reflexivity, J. London Math. Soc. (2) 53 (1996), 383-396. MR 97b:47003
  • 4. S. Brenner and M.C.R. Butler, Endomorphism rings of vector spaces and torsion free abelian groups, J. London Math. Soc. 40 (1965), 183-187.MR 30:4794
  • 5. J.A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512. MR 43:3831
  • 6. J.A. Deddens and P.A. Fillmore, Reflexive linear transformations, Liner Algebra and Appl. 10 (1975), 89-93. MR 50:10856
  • 7. L. Ding, Separating vectors and reflexivity, Linear Algebra and Appl. 174 (1992), 37-52. MR 94a:47075
  • 8. K.R. Fuller, Algebras from diagrams, J. Pure Appl. Algebra 48 (1987), 23-37. MR 89b:16018
  • 9. K.R. Fuller, W.K. Nicholson and J.F. Watters, Reflexive bimodules, Canadian J. Math. 41 (1989), 592-611. MR 90g:16019
  • 10. K.R. Fuller, W.K. Nicholson and J.F. Watters, Direct sums of reflexive modules, Linear Algebra and Appl. 239 (1996), 201-214. MR 97a:16011
  • 11. K.R. Fuller, W.K. Nicholson and J.F. Watters, On $k$-reflexive representations of algebras, Proc. Amer. Math. Soc. 125 (1997), 47-50.MR 97c:16027
  • 12. J.F. Habibi and W.H. Gustafson, Reflexive serial algebras, Linear Algebra and Appl. 99 (1988), 217-223. MR 89d:16028
  • 13. D. Hadwin, Algebraically reflexive linear transformations, Linear and Multilin. Alg. 14 (1983), 225-233. MR 85e:47003
  • 14. P.R. Halmos, Reflexice lattices of subspaces, J. London Math. Soc. 4 (1971), 257-263. MR 44:5808
  • 15. N. Snashall, Reflexivity of modules over QF-3 algebras, Comm. in Algebra 26 (1998), 4233-4242. CMP 99:05

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 16D20, 16G99, 16P10, 47A15

Retrieve articles in all journals with MSC (1991): 16D20, 16G99, 16P10, 47A15


Additional Information

V. P. Camillo
Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
Email: camillo@math.uiowa.edu

K. R. Fuller
Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
Email: kfuller@math.uiowa.edu

DOI: https://doi.org/10.1090/S0002-9939-00-05331-4
Received by editor(s): September 10, 1998
Received by editor(s) in revised form: November 10, 1998
Published electronically: April 28, 2000
Communicated by: Ken Goodearl
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society