Exotic smooth structures on

Author:
B. Doug Park

Journal:
Proc. Amer. Math. Soc. **128** (2000), 3057-3065

MSC (2000):
Primary 57R55; Secondary 57R57, 53D05.

DOI:
https://doi.org/10.1090/S0002-9939-00-05357-0

Published electronically:
March 2, 2000

Erratum:
Proc. Amer. Math. Soc. 136 (2008), 1503-1503.

MathSciNet review:
1664426

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct exotic and as a corollary of recent results of I. Dolgachev and C. Werner concerning a numerical Godeaux surface. We also construct another exotic using the surgery techniques of R. Fintushel and R. J. Stern. We show that these 4-manifolds are irreducible by computing their Seiberg-Witten invariants.

**[B]**R. Barlow: A simply connected surface of general type with ,*Invent. Math.***79**(1985), 293-301. MR**87a:14033****[CG]**P. Craighero and R. Gattazzo: Quintic surfaces of having a nonsingular model with , ,*Rend. Sem. Mat. Univ. Padova***91**(1994), 187-198. MR**95g:14038****[DW]**I. Dolgachev and C. Werner: A simply connected numerical Godeaux surface with ample canonical class,*preprint*.**[FS1]**R. Fintushel and R. Stern: Immersed Spheres in 4-Manifolds and The Immersed Thom Conjecture,*Turkish J. of Math.***19**(1995), 145-157. MR**96j:57036****[FS2]**R. Fintushel and R. Stern: Knots, Links and 4-manifolds, to appear in*Invent. Math.***[FQ]**M.H. Freedman and F. Quinn: Topology of 4-Manifolds, Princeton University Press, 1990. MR**94b:57021****[G]**R.E. Gompf: A new construction of symplectic manifolds,*Annals of Math.***142**(1995), 527-595. MR**96j:57025****[GS]**R.E. Gompf and A.I. Stipsicz: An Introduction to 4-Manifolds and Kirby Calculus,*preprint*.**[Ko]**D. Kotschick: On manifolds homeomorphic to ,*Invent. Math.***95**(1989), 591-600. MR**90a:57047****[KM]**P.B. Kronheimer and T.S. Mrowka: The genus of embedded surfaces in the projective plane,*Math. Res. Letters***1**(1994), 797-804. MR**96a:57073****[L]**K. Lamotke: The topology of complex projective varieties after S. Lefschetz,*Topology***20**(1981), 15-51. MR**81m:14019****[M]**J.W. Morgan: The Seiberg-Witten equations and applications to the topology of smooth four-manifolds,*Math. Notes***44**, Princeton University Press, 1996. MR**97d:57042****[MST]**J.W. Morgan, Z. Szabó and C.H. Taubes: A Product Formula for the Seiberg-Witten Invariants and the Generalized Thom Conjecture,*J. Diff. Geom.***44**(1996), 706-788. MR**97m:57052****[OS]**P. Ozsváth and Z. Szabó: The symplectic Thom conjecture,*preprint*.**[P]**B.D. Park: Exotic smooth structures on , Part II, this issue.**[Sa]**D. Salamon: Spin Geometry and Seiberg-Witten Invariants,*preprint*.**[St]**A. Stipsicz: Donaldson invariants of certain symplectic manifolds,*J. Reine Angew. Math.***465**(1995), 1-10. MR**96h:57030****[Sz1]**Z. Szabó: Irreducible four-manifolds with small Euler characteristics,*Topology***35**(1996), 411-426. MR**97c:57021****[Sz2]**Z. Szabó: Exotic 4-manifolds with ,*Math. Res. Letters***3**(1996), 731-741. MR**97j:57049****[Ta]**C.H. Taubes: The Seiberg-Witten invariants and symplectic forms,*Math. Res. Letters***1**(1994), 809-822. MR**95j:57039****[Th]**W. Thurston: Some simple examples of symplectic manifolds,*Proc. Amer. Math. Soc.***55**(1976), 467-468. MR**53:6578****[Wi]**E. Witten: Monopoles and four-manifolds,*Math. Res. Letters***1**(1994), 769-796. MR**96d:57035****[Y]**B.Z. Yu, Some computations of Donaldson's polynomials via flat connections,*Thesis*, U.C. Berkeley, 1994.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
57R55,
57R57,
53D05.

Retrieve articles in all journals with MSC (2000): 57R55, 57R57, 53D05.

Additional Information

**B. Doug Park**

Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544

Email:
bahnpark@math.princeton.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05357-0

Received by editor(s):
August 4, 1998

Received by editor(s) in revised form:
November 2, 1998

Published electronically:
March 2, 2000

Communicated by:
Ronald A. Fintushel

Article copyright:
© Copyright 2000
American Mathematical Society