Exotic smooth structures on , Part II

Author:
B. Doug Park

Journal:
Proc. Amer. Math. Soc. **128** (2000), 3067-3073

MSC (2000):
Primary 57R55; Secondary 57R57, 53D35

DOI:
https://doi.org/10.1090/S0002-9939-00-05358-2

Published electronically:
March 2, 2000

MathSciNet review:
1664422

Full-text PDF

Abstract | References | Similar Articles | Additional Information

We construct exotic and using the surgery techniques of R. Fintushel and R.J. Stern. We show that these 4-manifolds are irreducible by computing their Seiberg-Witten invariants.

**[B]**R. Barlow: A simply connected surface of general type with ,*Invent. math.***79**(1985), 293-301. MR**87a:14033****[F]**R. Fintushel: Lecture at the Topology and Geometry Conference, University of Århus, 1998.**[FS1]**R. Fintushel and R.J. Stern: Immersed Spheres in 4-Manifolds and The Immersed Thom Conjecture,*Turkish J. of Math.***19**(1995), 145-157. MR**96j:57036****[FS2]**R. Fintushel and R.J. Stern: Knots, Links and 4-manifolds, to appear in*Invent. math.***[FQ]**M.H. Freedman and F. Quinn: Topology of 4-Manifolds, Princeton University Press, 1990. MR**94b:57021****[G]**R.E. Gompf: A new construction of symplectic manifolds,*Annals of Math.***142**(1995), 527-595. MR**96j:57025****[GS]**R.E. Gompf and A.I. Stipsicz: An Introduction to 4-Manifolds and Kirby Calculus,*preprint*.**[LL]**B.H. Li and T.J. Li: Minimal genus smooth embeddings in and with ,*Topology***37**(1998), 575-594. MR**99b:57059****[MST]**J.W. Morgan, Z. Szabó and C.H. Taubes: A Product Formula for the Seiberg-Witten Invariants and the Generalized Thom Conjecture,*J. Diff. Geom.***44**(1996), 706-788. MR**97m:57052****[OS]**P. Ozsváth and Z. Szabó: The symplectic Thom conjecture,*preprint*.**[P]**B.D. Park: Exotic smooth structures on , this issue.**[Sa]**D. Salamon: Spin Geometry and Seiberg-Witten Invariants,*preprint*.**[Sz]**Z. Szabó: Irreducible four-manifolds with small Euler characteristics,*Topology***35**(1996), 411-426. MR**97c:57021****[T]**C.H. Taubes: The Seiberg-Witten invariants and symplectic forms,*Math. Res. Letters***1**(1994), 809-822. MR**95j:57039**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
57R55,
57R57,
53D35

Retrieve articles in all journals with MSC (2000): 57R55, 57R57, 53D35

Additional Information

**B. Doug Park**

Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544

Email:
bahnpark@math.princeton.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05358-2

Received by editor(s):
September 25, 1998

Received by editor(s) in revised form:
November 2, 1998

Published electronically:
March 2, 2000

Communicated by:
Ronald A. Fintushel

Article copyright:
© Copyright 2000
American Mathematical Society