Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A weighted uniform $L^{p}$-estimate of Bessel functions: A note on a paper of Guo


Author: Krzysztof Stempak
Journal: Proc. Amer. Math. Soc. 128 (2000), 2943-2945
MSC (1991): Primary 33C10
DOI: https://doi.org/10.1090/S0002-9939-00-05365-X
Published electronically: March 2, 2000
MathSciNet review: 1664391
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An improved Guo's uniform $L^{p}$ estimate of Bessel functions is shown by using a uniform pointwise bound of Barceló and Córdoba.


References [Enhancements On Off] (What's this?)

  • [BC] J. A. Barceló, A. Córdoba, Band-limited functions: $L^{p}$-convergence, Trans. Amer. Math. Soc. 313 (1989), 655-669. MR 90g:42017
  • [C] A. Córdoba, The disc multiplier, Duke Math. J. 58 (1989), 21-29. MR 90j:42038
  • [Guo] K. Guo, A uniform $L^{p}$ estimate of Bessel functions and distributions supported on $S^{n-1}$, Proc. Amer. Math. Soc. 125 (1997), 1329-1340. MR 97g:46047
  • [Va] J. L. Varona, Fourier series of functions whose Hankel transform is supported on [0,1], Constr. Approx. 10 (1994), 65-75. MR 94m:42071
  • [W] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1966.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 33C10

Retrieve articles in all journals with MSC (1991): 33C10


Additional Information

Krzysztof Stempak
Affiliation: Instytut Matematyki Politechniki Wrocławskiej, ul.Wyb. Wyspianskiego 27, 50-370 Wrocław, Poland
Email: stempak@ulam.im.pwr.wroc.pl

DOI: https://doi.org/10.1090/S0002-9939-00-05365-X
Keywords: Bessel functions, uniform estimates
Received by editor(s): August 1, 1998
Received by editor(s) in revised form: November 11, 1998
Published electronically: March 2, 2000
Additional Notes: This research was supported in part by KBN grant # 2 PO3A 048 15 and European Commision via the TMR network “Harmonic analysis”, contract no: ERB FMRX–CT97–0159.
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society