THE DEDEKIND-MERTENS LEMMA
AND THE CONTENTS OF POLYNOMIALS

DAVID E. RUSH

(Communicated by Wolmer V. Vasconcelos)

Abstract. Let \(R \) be a commutative ring, let \(X \) be an indeterminate, and let \(g \in R[X] \). There has been much recent work concerned with determining the Dedekind-Mertens number \(\mu_R(g) = \min \{ k \in \mathbb{N} | c_R(f)^{k-1}c_R(fg) = c_R(f)^kc_R(g) \text{ for all } f \in R[X] \} \), especially on determining when \(\mu_R(g) = 1 \). In this note we introduce a universal Dedekind-Mertens number \(u_R(g) \), which takes into account the fact that \(S(g) \leq \deg(g) + 1 \) for any ring \(S \) containing \(R \) as a subring, and show that \(u_R(g) \) behaves more predictably than \(\mu_R(g) \).

Introduction

Many papers (\cite{1}, \cite{2}, \cite{3}, \cite{4}, \cite{5}, \cite{7}, \cite{8}, \cite{9}, \cite{10}, \cite{13}) have recently considered questions concerning the following well-known result which is usually called the Dedekind-Mertens Lemma:

Lemma 0.1. If \(g \in R[X] \) and \(\deg(g) = n \), then
\[
 c_R(f)^n c_R(fg) = c_R(f)^{n+1} c_R(g) \text{ for all } f \in R[X].
\]

Much of this work has been on determining the smallest \(n \) for which (0.1) holds. To obtain a refinement of Lemma 0.1 in \cite{10} the authors defined the Dedekind-Mertens number \(\mu_R(g) \) of \(g \in R[X] \) to be the smallest positive integer \(k \) such that \(c_R(f)^{k-1}c_R(fg) = c_R(f)^kc_R(g) \) for all \(f \in R[X] \). Thus Lemma 0.1 states that \(\mu_R(g) \leq \deg(g) + 1 \). It follows that \(\mu_R(g) = \sup \{ \mu_{R_M}(g) | M \text{ is a maximal ideal of } R \} \). Thus in considering \(\mu_R(g) \) we may as well assume \(R \) is quasilocal. In this case, the main result of \cite{10} improves Lemma 0.1 to
\[
 \mu_R(g) \leq \mu_R(c_R(g))
\]
where \(\mu_R(M) \) denotes the minimal number of generators of the \(R \)-module \(M \). In \cite{10}, \cite{4}, the question of the opposite inequality to (0.2) was also considered. The special case of whether \(\mu_R(g) = 1 \) implies \(c_R(g) \) is principal was considered as early as \cite{14}, and several further results have recently been obtained on this case (\cite{2}, \cite{3}, \cite{4}, \cite{5}, \cite{7}, \cite{8}, \cite{9}, \cite{10}).

An important further property of the exponent \(n \) in Lemma 0.1 is that it is universal in the sense that the formula (0.1) continues to hold if \(f \) is chosen to
have coefficients in any ring S containing R as a subring, whereas we may have $\mu_R(g) < \mu_S(g)$ [Remark 1.7], or $\mu_R(c_R(g)) > \mu_S(c_S(g))$. Some of the history of the Dedekind-Mertens Lemma is discussed in [4] where the importance of this independence of the base ring is stressed. The object of this note is to introduce the universal Dedekind-Mertens number, and to point out that if one switches from the Dedekind-Mertens number as defined above, to the universal Dedekind-Mertens number, then the counterparts to the questions considered in [10], [4] become much simpler.

1. Strong Dedekind-Mertens Lemma

The original Dedekind-Mertens Lemma, as given for example in [11], [12], [13] and [6, p. 3] is stronger than Lemma 0.1. To explain this we extend the definition of content. If $\phi : R \to S$ is a homomorphism of rings and $f \in S[X]$, we define $c_R(f)$ to be the R-submodule of S generated by the coefficients of f. If A, B are R-submodules of S, we may define AB to be the R-submodule of S generated by $\{ab \mid a \in A, b \in B\}$. Then $c_R(f)^n c_R(fg)$ and $c_R(f)^{n+1} c_R(g)$ make sense. In particular, if ϕ is an inclusion of a subring R into S, it is clear that the smaller that one chooses R the stronger the condition $c_R(f)^n c_R(fg) = c_R(f)^{n+1} c_R(g)$ becomes. The Dedekind-Mertens Lemma as given for example in [13, 1] states:

Lemma 1.1. Let $g \in R[X]$ with $\deg(g) = n$. Then

$$cz(f)^n cz(fg) = cz(f)^{n+1} cz(g)$$

for all $f \in R[X]$. In particular, unlike the inequality (0.2) this condition is universal in the sense that it continues to hold if R is replaced with any ring containing the coefficients of f and g. Thus we may as well take the coefficients of f to be independent indeterminates. Because of the importance of this universality in Kronecker’s use of the content to develop his theory of divisors [3], and other reasons it is of interest to have a universal version of the inequality (0.2) and other results as well. For example if A is a subring of B, $f \in A[X]$ with $c_A(f) = A$ and $g \in B[X]$ with $fg \in A[X]$, it is immediate from Lemma 1.1 but not from Lemma 0.1 that $g \in A[X]$. If M is an R-module and $g \in M[X]$, let $c_{RM}(g)$ denote the R-submodule of M generated by the coefficients of g. Observe that if M is a submodule of an R-module N, then $c_{RM}(g) = c_{RN}(g)$. Thus we may just write $c_R(g)$. We will let R be a fixed quasilocal ring throughout. In considering the relationship between $\mu_R(g)$ and $\mu_R(c_R(g))$ for $g \in R[X]$ in [4], the authors defined the polarized Dedekind-Mertens number $\mu_R(g)$ of g with respect to R to be the smallest positive integer k such that

$$\sum_{i=1}^{k} c_R(f_i) c_R(f_1) c_R(f_2) \cdots c_R(f_i) \cdots c_R(f_k) c_R(f_k) c_R(g)$$

for all $f_1, \ldots, f_k \in R$. We also define the universal polarized Dedekind-Mertens number, and show that it is the same as the universal Dedekind-Mertens number.

Definition 1.2. Let M be an R-module and let $g \in M[X]$. Let $T = \{t_i \mid i \in \mathbb{N}\}$ be a new set of indeterminates. The universal Dedekind-Mertens number $u \mu_R(g)$ of g with respect to R is the smallest positive integer k such that, for each $f \in R[T][X]$, it holds that

$$c_R(f)^{k-1} c_R(fg) = c_R(f)^k c_R(g)$$

as submodules of $M[T] = M \otimes_R R[T]$.
The universal polarized Dedekind-Mertens number $\tilde{u}\mu_R(g)$ of g with respect to R is the smallest positive integer k such that for all $f_1, \ldots, f_k \in R[T][X]$ we have
\[
\sum_{i=1}^{k} c_R(f_i) c_R(f_1) c_R(f_2) \cdots \tilde{c}_R(f_i) \cdots c_R(f_k) = c_R(f_1) c_R(f_2) \cdots c_R(f_k) c_R(g)
\]
as submodules of $M[T] = M \otimes_R R[T]$.

It is clear that $u\mu_R(g) \leq u\tilde{\mu}_R(g)$ and the proof of the Dedekind-Mertens Lemma given in [13] actually shows that $u\tilde{\mu}_R(g) \leq \deg(g) + 1$. Also, if R is a subring of S, it follows that $u\mu_R(g) \geq u\mu_S(g)$ and $u\tilde{\mu}_R(g) \geq u\tilde{\mu}_S(g)$.

2. Results

While the focus of much of [2], [3], [4], [5], [7], [9], [11] has been on determining the Dedekind-Mertins number $\mu_R(g)$, with many interesting partial results, if we switch to the universal Dedekind-Mertins number $u\mu_R(g)$, we have the following result.

Theorem 2.1. Let (R, m) be a quasi-local ring, let M be an R-module and let $g \in M[X]$. Then $\mu_R(\mu_R(g)) = u\mu_R(g) = u\mu_R(g)$.

Proof. As noted before we have $u\mu_R(g) \leq u\tilde{\mu}_R(g)$. The proof of the opposite inequality is similar to that of [4] Lemma 2.4. Let $u\mu_R(g) = k$ and let $f_1, \ldots, f_k \in R[T][X]$. Let $N_i > \max\{\deg_X(f_1), \deg_X(f_1 g)\}$, and if N_1, \ldots, N_{i-1} have been defined, let $N_i > \max\{\deg_X(f_i), \deg_X(f_i g) + N_{i-1}\}$. Let t_1, \ldots, t_{k-1} be members of T which do not appear in any of the f_i, and let $T' = T - \{t_1, \ldots, t_{k-1}\}$.

By the definition of $u\mu_R(g)$ we have
\[
c_R(f_1 + \sum_{i=2}^{k} f_it_{i-1}X^{N_{i-1}})^{k-1}c_R([f_1 + \sum_{i=2}^{k} f_it_{i-1}X^{N_{i-1}}]g)
\]
\[= c_R(f_1 + \sum_{i=2}^{k} f_it_{i-1}X^{N_{i-1}})^{k}c_R(g).
\]

By the choice of the N_i this is
\[
[c_R(f_1) + \sum_{i=2}^{k} c_R(f_i)t_{i-1}]^{k-1}[c_R(f_1 g) + \sum_{i=2}^{k} c_R(f_1 g)t_{i-1}]
\]
\[= [c_R(f_1) + \sum_{i=2}^{k} c_R(f_i)t_{i-1}]^{k}c_R(g).
\]

Considering these as polynomials in t_1, \ldots, t_{k-1} with coefficients in $R[X, T']$, and comparing the coefficients of the monomial $t_1 t_2 \cdots t_{k-1}$, we get
\[
\sum_{i=1}^{k} c_R(f_i) c_R(f_1) c_R(f_2) \cdots \tilde{c}_R(f_i) \cdots c_R(f_k) = c_R(f_1) c_R(f_2) \cdots c_R(f_k) c_R(g).
\]

Thus $u\mu_R(g) \geq u\tilde{\mu}_R(g)$.

The proof that $u\mu_R(g) \leq \mu_R(\mu_R(g))$ is very similar to the proof given in [10] that $\mu_R(g) \leq \mu_R(\mu_R(g))$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 2.2. Let \((R, m)\) be a quasilocal ring, let \(T\) be a countably infinite set of independent indeterminates over \(R[X]\), let \(M\) be an \(R\)-module and let \(g \in M[X]\). Let \(b \in mc_R(g)\) and \(h = g + bX^i\). Let \(A\) be a finitely generated \(R\)-module over \(R[T]\) and let \(f \in R[T][X]\). If \(A_cR(f)c_R(h) = A_cR(fh)\), then \(A_cR(f)c_R(g) = A_cR(fg)\).

Proof. It suffices to show \(A_cR(f)c_R(g) \subseteq A_cR(fg)\). Since \(b \in mc_R(g)\) and \(h = g + bX^i\), we have \(c_R(h) \subseteq c_R(g) \subseteq c_R(h) + mc_R(g)\), and thus \(c_R(g) = c_R(h)\) by Nakayama’s Lemma. Thus

\[
A_cR(f)c_R(g) = A_cR(f)c_R(h) = A_cR(fh) = A_cR(f(g + bX^i))
\]

\[
\subseteq A_cR(fg) + A_cR(f) \subseteq A_cR(fg) + mA_cR(f)c_R(g).
\]

By Nakayama’s Lemma we have \(A_cR(f)c_R(g) = A_cR(fg)\).

To show \(u\mu_R(g) \leq \mu_R(c_R(g))\), we may assume that \(c_R(g)\) is minimally generated by \(k \geq 2\) elements, and that if \(h \in M[X]\) with \(c_R(h)\) minimally generated by fewer than \(k\) elements, then for any \(f \in R[T][X]\) we have \(c_R(f)k^{-2}c_R(fh) = c_R(f)^{k-1}c_R(h)\).

Let \(g = b_mX^m + \cdots + b_1X + b_0\). By the above lemma we may assume \(b_m\) is a minimal generator of \(c_R(g)\). Then \(g = b_mh + g_1\), where \(c_R(g_1)\) is generated by fewer than \(k\) elements and \(h \in R[X]\) with \(c_R(h) = R\).

Write \(f = a_nX^n + f_1\) where \(\deg(f_1) < \deg(f) = n\). By induction on \(\deg(f)\) we may also assume \(c_R(f_1)k^{-1}c_R(fg) = c_R(f_1)^{k-1}c_R(g)\).

Claim 1. \(c_R(fg_1) \subseteq c_R(fg) + b_mC_R(f_1)\).

Indeed we have

\[
c_R(fg_1) = c_R(f(g - b_mh)) \subseteq c_R(fg) + c_R(b_mhf) = c_R(fg) + b_mC_R(f)
\]

\[
= c_R(fg) + b_mC_R(a_nX^n + f_1) \subseteq c_R(fg) + a_nb_mR + b_mC_R(f_1),
\]

and since \(a_nb_m \in c_R(fg)\), this is \(c_R(fg) + b_mC_R(f_1)\). This proves Claim 1.

Claim 2. \(c_R(fg) \subseteq c_R(fg) + a_nC_R(g_1)\).

Indeed we have

\[
c_R(f_1g) = c_R((f - a_nX^n)g) \subseteq c_R(fg) + a_nC_R(g) \subseteq c_R(fg) + a_nC_R(b_mh + g_1)
\]

\[
\subseteq c_R(fg) + a_nC_R(g) + a_nC_R(g_1) = c_R(fg) + a_nC_R(g_1).
\]

The last equality holds since \(a_nb_m \in c_R(fg)\). This proves Claim 2.

Now to prove \(u\mu_R(g) \leq \mu_R(c_R(g))\), it suffices to show that each term of \(c_R(f)^kC_R(g)\) of the form \(\theta = a_0^{v_0}a_1^{v_1} \cdots a_k^{v_k}b_j\), with \(\sum v_i = k\), is in \(c_R(f)^{k-1}C_R(fg)\).

Case 1. If \(v_n \neq 0\) and \(j = m\), then \(\theta = a_0^{v_0}a_1^{v_1} \cdots a_k^{v_k}b_m \in c_R(f)^{k-1}C_R(fg)\).

Case 2. If \(v_n \neq 0\) and \(j < m\), then \(b_j = b_me_j + b_1j\), where \(e_j\) is a coefficient of \(h\) and \(b_1j\) is a coefficient of \(g_1\), and \(\theta = a_0^{v_0}a_1^{v_1} \cdots a_k^{v_k}b_j = a_0^{v_0}a_1^{v_1} \cdots a_k^{v_k}(b_me_j + b_1j) \in c_R(f)^{k-1}C_R(fg) + c_R(f)^{k-1}a_nC_R(g_1)\).

Case 3. If \(v_n = 0\), then \(\theta = a_0^{v_0}a_1^{v_1} \cdots a_{n-1}^{v_{n-1}}b_j \in c_C(f_1)^kC_R(g) = c_R(f_1)^{k-1}C_R(f_1g)\) by the induction hypothesis on the degree of \(f\).

Combining the three cases we have

\[
c_R(f)^kC_R(g) \subseteq c_R(f)^{k-1}C_R(fg) + c_R(f)^{k-1}a_nC_R(g_1) + c_R(f_1)^{k-1}C_R(f_1g).
\]

Applying Claim 2 to the third term on the right, we see that this is contained in

\[
c_R(f)^{k-1}C_R(fg) + c_R(f)^{k-1}a_nC_R(g_1) + c_R(f_1)^{k-1}(c_R(fg) + a_nC_R(g_1)).
\]
Thus if \(a \)
b, and \(c \)
the product \(c_R(f_1)^{k-1}(c_R(fg) + a_n c_R(g_1)) \) is contained the other two terms. Thus
\[
(2.1) \quad c_R(f)^k c_R(g) \subseteq c_R(f)^{k-1} c_R(fg) + c_R(f)^{k-1} a_n c_R(g_1).
\]
Now since \(c_R(g_1) \) is generated by fewer than \(k \) elements, we have \(c_R(f)^{k-1} c_R(fg_1) = c_R(f)^{k-1} c_R(g_1) \) by induction on \(k \). Thus the right side of (2.1) is
\[
c_R(f)^{k-1} c_R(fg) + a_n c_R(f)^{k-2} c_R(fg_1).
\]
By Claim 1, this is contained in
\[
c_R(f)^{k-1} c_R(fg) + a_n c_R(f)^{k-2} (c_R(fg) + b_m c_R(f_1))
= c_R(f)^{k-1} c_R(fg) + a_n c_R(f)^{k-2} c_R(fg) + a_n b_m c_R(f)^{k-2} c_R(f_1).
\]
But \(a_n c_R(f)^{k-2} c_R(fg) \subseteq c_R(f)^{k-1} c_R(fg) \) and
\[
a_n b_m c_R(f)^{k-2} c_R(f_1) = (c_R(f)^{k-2} c_R(f_1))(a_n b_m) \subseteq c_R(f)^{k-1} c_R(fg).
\]
Thus \(c_R(f)^k c_R(g) = c_R(f)^{k-1} c_R(fg) \), showing that \(u \mu_R(g) \leq \mu_R(c_R(g)) \).

It remains to prove \(\mu_R(c_R(g)) \leq u \mu_R(g) \). This will follow from the next proposition.

Proposition 2.3. Let \(g \in R[X] \) have degree \(m \). If \(\mu_R(c_R(g)) > k \), and \(f \in R[T][X] \) has independent indeterminates for its coefficients, and \(\deg(f) = n > mk - k^2 \), then \(c_R(f)^{k-1} c_R(fg) \neq c_R(f)^k c_R(g) \). Thus \(u \mu_R(g) > k \).

Proof. Let \(\mu_R(c_R(g)) = k + j, j \geq 1 \). Then \(\mu_R(c_R(f)) = n + 1 \), and \(\mu_R(c_R(f)^k) = \binom{n+k}{n} \) = the number of monomials of degree \(k \) in \(n+1 \) variables. Also the inequality \(mk - k^2 < n \) is easily seen to be equivalent to \(\binom{n+k}{n} \) \((m + n + 1) < \binom{n+k}{n} (k + 1) \).

Then
\[
\mu_R(c_R(f)^{k-1} c_R(fg)) \leq \binom{n+k}{n} (m + n + 1)
= \binom{n+k}{n} (k + 1) \leq \binom{n+k}{n} \mu_R(c_R(f)^k c_R(g)) = \mu_R(c_R(f)^k c_R(g)).
\]
Thus if \(\mu_R(c_R(g)) \geq k + 1 \), then \(u \mu_R(g) \geq k + 1 \).

We state two interesting special cases of the above proposition.

(i) If \(\mu_R(c_R(g)) > 1 \) and \(f \in R[T][X] \) has independent indeterminates for its coefficients, and \(\deg(f) = n > m - 1 \), then \(c_R(fg) \neq c_R(f) c_R(g) \).

(ii) If \(\mu_R(c_R(g)) \geq m \) and \(f \in R[T][X] \) has independent indeterminates for its coefficients, and \(\deg(f) = n > m^2 - m^2 = 0 \), then \(c_R(f)^{m-1} c_R(fg) \neq c_R(f)^m c_R(g) \).

Remark 2.4. Let \(M \) be an \(R \)-module and let \(g \in M[X] \). The **universal Dedekind-Mertens number** \(u \mu_R(g) \) of \(g \) with respect to \(R \) is also the smallest positive integer \(k \) such that, for each commutative \(R \)-algebra \(S \) and each \(f \in S[X] \), it holds that
\[
c_R(f)^{k-1} c_R(fg) = c_R(f)^k c_R(g)
\]
as submodules of \(M \otimes_R S \).

Similarly the **universal polarized Dedekind-Mertens number** \(u \bar{\mu}_R(g) \) of \(g \) with respect to \(R \) is the smallest positive integer \(k \) such that for each commutative \(R \)-algebra \(S \).
and for all \(f_1, \ldots, f_k \in S[X] \) we have
\[
\sum_{i=1}^{k} c_R(f_i) c_R(f_1) c_R(f_2) \cdots \overline{c_R(f_i)} \cdots c_R(f_k) = c_R(f_1) c_R(f_2) \cdots c_R(f_k) c_R(g)
\]
as submodules of \(M \otimes_R S \).

Proof. Let \(k \) be the smallest positive integer such that for each commutative \(R \)-algebra \(S \) and each \(f \in S[X] \), it holds that
\[
c_R(f)^{k-1} c_R(fg) = c_R(f)^k c_R(g)
\]
as submodules of \(M \otimes_R S \).

By taking \(S = R[T] \) where \(T \) is a countably infinite set of indeterminates over \(R[X] \), we get \(k \geq m_R(g) \).

Also, if \(S \) is a commutative \(R \)-algebra and \(f = a_m X^m + \cdots + a_0 \in S[X] \), let \(h = t_m X^m + \cdots + t_0 \in R[T][X] \), where the \(t_i \in T \) are distinct indeterminates. Choose any \(R \)-algebra homomorphism \(\sigma : R[T][X] \to S[X] \) such that \(\sigma(X) = X \) and \(\sigma(t_i) = a_i \) for \(i = 0, \ldots, m \). Then \(\sigma \) induces a homomorphism \(M \otimes_R R[T][X] \to M \otimes_R S[X] \) which, for \(n = m_R(g) \), carries \(c_R(h)^{n-1} c_R(hg) = c_R(h)^n c_R(g) \) to \(c_R(f)^{n-1} c_R(fg) = c_R(f)^n c_R(g) \). Thus \(k \leq m_R(g) \).

\[\square \]

References

Department of Mathematics, University of California, Riverside, California 92507
E-mail address: rush@math.ucr.edu