Semigroups and weights for group representations

Author:
Mohan S. Putcha

Journal:
Proc. Amer. Math. Soc. **128** (2000), 2835-2842

MSC (2000):
Primary 20C99, 20M30

DOI:
https://doi.org/10.1090/S0002-9939-00-05464-2

Published electronically:
March 2, 2000

MathSciNet review:
1691001

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Let be a finite group. Consider a pair of linear characters of subgroups of with and agreeing on . Naturally associated with is a finite monoid . Semigroup representation theory then yields a representation of . If is irreducible, we say that is a weight for . When the underlying field is the field of complex numbers, we obtain a formula for the character of in terms of and . We go on to construct weights for some familiar group representations.

**1.**J. L. Alperin,*Weights for finite groups*, Proc. Symp. Pure Math.**47**(1987), 369-379. MR**89h:20015****2.**R. W. Carter,*Finite groups of Lie type: Conjugacy classes and complex character*, Wiley (1985). MR**87d:20060****3.**A. H. Clifford,*Matrix representations of completely simple semigroups*, Amer. J. Math.**64**(1942), 327-342. MR**4:4a****4.**A. H. Clifford and G. B. Preston,*Algebraic theory of semigroups*, Vol. 1, AMS Surveys No. 7, 1961.**5.**C. W. Curtis,*Modular representations of finite groups with split -pari*, Lecture Notes in Math.**131**(1970), 57-95. MR**41:6991****6.**C. W. Curtis and I. Reiner,*Representation theory of finite groups and associative algebras*, Wiley (1962). MR**26:2519****7.**W. Fulton and J. Harris,*Representation theory*, Graduate Texts in Mathematics**129**, Springer-Verlag, 1991. MR**93a:20069****8.**G. James and A. Kerber,*The representation theory of the symmetric group*, Encyclopedia of Mathematics and its applications, Vol. 16, Addison-Wesley, 1981. MR**83k:20003****9.**G. Lusztig,*Characters of reductive groups over a finite field*, Annals. of Math. Studies**107**(1984), Princeton University Press. MR**86j:20038****10.**M. S. Putcha,*A semigroup approach to linear algebraic groups*, J. Algebra**80**(1983), 164-185. MR**84j:20045****11.**-,*Sandwich matrices, Solomon algebras and Kazhdan-Lusztig polynomials*, Trans. Amer. Math. Soc.**340**(1993), 415-428. MR**94a:20112****12.**-,*Classification of monoids of Lie type*, J. Algebra**163**(1994), 636-662. MR**95b:20089****13.**-,*Complex representations of finite monoids*, Proc. London Math. Soc.**73**(1996), 623-641. MR**97e:20093****14.**M. S. Putcha and L. E. Renner,*The canonical compactification of a finite group of Lie type*, Trans. Amer. Math. Soc.**337**(1993), 305-319. MR**93g:20123**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
20C99,
20M30

Retrieve articles in all journals with MSC (2000): 20C99, 20M30

Additional Information

**Mohan S. Putcha**

Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205

Email:
putcha@math.ncsu.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05464-2

Received by editor(s):
November 1, 1998

Published electronically:
March 2, 2000

Communicated by:
Ronald M. Solomon

Article copyright:
© Copyright 2000
American Mathematical Society