Semigroups and weights for group representations
Author:
Mohan S. Putcha
Journal:
Proc. Amer. Math. Soc. 128 (2000), 28352842
MSC (2000):
Primary 20C99, 20M30
Published electronically:
March 2, 2000
MathSciNet review:
1691001
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a finite group. Consider a pair of linear characters of subgroups of with and agreeing on . Naturally associated with is a finite monoid . Semigroup representation theory then yields a representation of . If is irreducible, we say that is a weight for . When the underlying field is the field of complex numbers, we obtain a formula for the character of in terms of and . We go on to construct weights for some familiar group representations.
 1.
J.
L. Alperin, Weights for finite groups, The Arcata Conference
on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos.
Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987,
pp. 369–379. MR 933373
(89h:20015)
 2.
Roger
W. Carter, Finite groups of Lie type, Pure and Applied
Mathematics (New York), John Wiley & Sons, Inc., New York, 1985.
Conjugacy classes and complex characters; A WileyInterscience Publication.
MR 794307
(87d:20060)
 3.
A.
H. Clifford, Matrix representations of completely simple
semigroups, Amer. J. Math. 64 (1942), 327–342.
MR
0006551 (4,4a)
 4.
A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Vol. 1, AMS Surveys No. 7, 1961.
 5.
C.
W. Curtis, Modular representations of finite groups with split
(𝐵,𝑁)pairs, Seminar on Algebraic Groups and Related
Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69)
Springer, Berlin, 1970, pp. 57–95. MR 0262383
(41 #6991)
 6.
Charles
W. Curtis and Irving
Reiner, Representation theory of finite groups and associative
algebras, Pure and Applied Mathematics, Vol. XI, Interscience
Publishers, a division of John Wiley & Sons, New YorkLondon, 1962. MR 0144979
(26 #2519)
 7.
William
Fulton and Joe
Harris, Representation theory, Graduate Texts in Mathematics,
vol. 129, SpringerVerlag, New York, 1991. A first course; Readings in
Mathematics. MR
1153249 (93a:20069)
 8.
Gordon
James and Adalbert
Kerber, The representation theory of the symmetric group,
Encyclopedia of Mathematics and its Applications, vol. 16,
AddisonWesley Publishing Co., Reading, Mass., 1981. With a foreword by P.
M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
(83k:20003)
 9.
George
Lusztig, Characters of reductive groups over a finite field,
Annals of Mathematics Studies, vol. 107, Princeton University Press,
Princeton, NJ, 1984. MR 742472
(86j:20038)
 10.
Mohan
S. Putcha, A semigroup approach to linear algebraic groups, J.
Algebra 80 (1983), no. 1, 164–185. MR 690712
(84j:20045), http://dx.doi.org/10.1016/00218693(83)900261
 11.
Mohan
S. Putcha, Sandwich matrices, Solomon algebras,
and KazhdanLusztig polynomials, Trans. Amer.
Math. Soc. 340 (1993), no. 1, 415–428. MR 1127157
(94a:20112), http://dx.doi.org/10.1090/S00029947199311271572
 12.
Mohan
S. Putcha, Classification of monoids of Lie type, J. Algebra
163 (1994), no. 3, 636–662. MR 1265855
(95b:20089), http://dx.doi.org/10.1006/jabr.1994.1035
 13.
Mohan
S. Putcha, Complex representations of finite monoids, Proc.
London Math. Soc. (3) 73 (1996), no. 3,
623–641. MR 1407463
(97e:20093), http://dx.doi.org/10.1112/plms/s373.3.623
 14.
Mohan
S. Putcha and Lex
E. Renner, The canonical compactification of a
finite group of Lie type, Trans. Amer. Math.
Soc. 337 (1993), no. 1, 305–319. MR 1091231
(93g:20123), http://dx.doi.org/10.1090/S0002994719931091231X
 1.
 J. L. Alperin, Weights for finite groups, Proc. Symp. Pure Math. 47 (1987), 369379. MR 89h:20015
 2.
 R. W. Carter, Finite groups of Lie type: Conjugacy classes and complex character, Wiley (1985). MR 87d:20060
 3.
 A. H. Clifford, Matrix representations of completely simple semigroups, Amer. J. Math. 64 (1942), 327342. MR 4:4a
 4.
 A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Vol. 1, AMS Surveys No. 7, 1961.
 5.
 C. W. Curtis, Modular representations of finite groups with split pari, Lecture Notes in Math. 131 (1970), 5795. MR 41:6991
 6.
 C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Wiley (1962). MR 26:2519
 7.
 W. Fulton and J. Harris, Representation theory, Graduate Texts in Mathematics 129, SpringerVerlag, 1991. MR 93a:20069
 8.
 G. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its applications, Vol. 16, AddisonWesley, 1981. MR 83k:20003
 9.
 G. Lusztig, Characters of reductive groups over a finite field, Annals. of Math. Studies 107 (1984), Princeton University Press. MR 86j:20038
 10.
 M. S. Putcha, A semigroup approach to linear algebraic groups, J. Algebra 80 (1983), 164185. MR 84j:20045
 11.
 , Sandwich matrices, Solomon algebras and KazhdanLusztig polynomials, Trans. Amer. Math. Soc. 340 (1993), 415428. MR 94a:20112
 12.
 , Classification of monoids of Lie type, J. Algebra 163 (1994), 636662. MR 95b:20089
 13.
 , Complex representations of finite monoids, Proc. London Math. Soc. 73 (1996), 623641. MR 97e:20093
 14.
 M. S. Putcha and L. E. Renner, The canonical compactification of a finite group of Lie type, Trans. Amer. Math. Soc. 337 (1993), 305319. MR 93g:20123
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
20C99,
20M30
Retrieve articles in all journals
with MSC (2000):
20C99,
20M30
Additional Information
Mohan S. Putcha
Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 276958205
Email:
putcha@math.ncsu.edu
DOI:
http://dx.doi.org/10.1090/S0002993900054642
PII:
S 00029939(00)054642
Received by editor(s):
November 1, 1998
Published electronically:
March 2, 2000
Communicated by:
Ronald M. Solomon
Article copyright:
© Copyright 2000
American Mathematical Society
