Compactness of Floquet isospectral sets for the matrix Hill's equation

Author:
Robert Carlson

Journal:
Proc. Amer. Math. Soc. **128** (2000), 2933-2941

MSC (2000):
Primary 34A55; Secondary 34L40

DOI:
https://doi.org/10.1090/S0002-9939-00-05634-3

Published electronically:
April 7, 2000

MathSciNet review:
1709743

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Let denote the set of self adjoint potentials for the matrix Hill's equation having the same Floquet multipliers as . Elementary methods are used to show that has compact closure in the space of continuous matrix valued functions.

**1.**L. Ahlfors,*Complex Analysis*, McGraw-Hill, New York, 1966. MR**32:5844****2.**B. Després,*The Borg theorem for the vectorial Hill's equation*, Inverse Problems 11 (1995), 97-121. MR**96a:34158****3.**A. Finkel, E. Isaacson and E. Trubowitz,*An explicit solution of the inverse periodic problem for Hill's equation*, SIAM J. Math. Anal. 18 (1987), no. 1, 46-53. MR**88d:34037****4.**C. Fulton and S. Pruess,*Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems*, Journal of Mathematical Analysis and Applications, 188 (1994), no. 1, 297-340. MR**96e:34144****5.**J. Garnett and E. Trubowitz,*Gaps and bands of one dimensional periodic Schrödinger operators*, Comment. Math. Helvetici 59 (1984), 258-321. MR**85i:34004****6.**K. Iwasaki,*Inverse problem for Sturm-Liouville and Hill Equations*, Annali di Matematica, Pura ed Applicata (1987), 185-206. MR**89d:34053****7.**T. Kappeler,*Fibration of the phase space for the Korteweg-De Vries equation*, Annales de l'Institute Fourier 41 (1991), no. 1, 539-575. MR**92k:58212****8.**P. Lax,*Periodic solutions of the KdV equation*, Communications on Pure and Applied Mathematics 28 (1975), 141-188. MR**51:6192****9.**W. Magnus and S. Winkler,*Hill's Equation*, Dover, New York, 1979. MR**80k:34001****10.**H.P. McKean and P. van Moerbeke,*The spectrum of Hill's equation*, Inventiones Math. 30 (1975), 217-274. MR**53:936****11.**H.P. McKean and E. Trubowitz,*Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points*, Communications on Pure and Applied Mathematics 29 (1976), 143-226. MR**55:761****12.**J. Ralston and E. Trubowitz,*Isospectral sets for boundary value problems on the unit interval*, Ergod. Th. and Dynam. Sys. 8 (1988), 301-358. MR**89m:34035****13.**E. Trubowitz,*The inverse problem for periodic potentials*, Communications on Pure and Applied Mathematics 30 (1977), 321-337. MR**55:3408**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
34A55,
34L40

Retrieve articles in all journals with MSC (2000): 34A55, 34L40

Additional Information

**Robert Carlson**

Affiliation:
Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80933

Email:
carlson@castle.uccs.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05634-3

Keywords:
Hill's equation,
inverse spectral theory,
KdV

Received by editor(s):
November 10, 1998

Published electronically:
April 7, 2000

Communicated by:
Hal L. Smith

Article copyright:
© Copyright 2000
American Mathematical Society