SUPERPOSITION OPERATOR IN SOBOLEV SPACES ON DOMAINS

DENIS A. LABUTIN

(Communicated by Christopher D. Sogge)

Abstract. For an arbitrary open set \(\Omega \subset \mathbb{R}^n \) we characterize all functions \(G \) on the real line such that \(G \circ u \in W^{1,p}(\Omega) \) for all \(u \in W^{1,p}(\Omega) \). New element in the proof is based on Maz’ya’s capacitary criterion for the imbedding \(W^{1,p}(\Omega) \hookrightarrow L^\infty(\Omega) \).

Let \(\Omega \) be an open set in \(\mathbb{R}^n, n \geq 2 \), and let \(W^{1,p}(\Omega) \) be a Sobolev space with the norm
\[
\|u\|_{W^{1,p}(\Omega)} = \|u\|_{L^p(\Omega)} + \|\nabla u\|_{L^p(\Omega)}, \quad 1 \leq p < \infty.
\]

Let \(G : \mathbb{R}^1 \to \mathbb{R}^1 \) be a Borel function. Then the associated superposition operator \(T_G \) is given by
\[
u \mapsto G \circ u.
\]

The purpose of the present paper is to find the necessary and sufficient conditions on \(G \) for
\[
T_G : W^{1,p}(\Omega) \to W^{1,p}(\Omega).
\]

This and more general problems were considered for \(p \neq n \) and domains \(\Omega \) with Lipschitz boundaries in [9], [10], and for \(\Omega = \mathbb{R}^n, 1 \leq p < \infty \), in [3]. Following [3] we say that space \(W^{1,p}(\Omega) \) is supercritical if \(W^{1,p}(\Omega) \hookrightarrow L^\infty(\Omega) \), and subcritical if \(W^{1,p}(\Omega) \not\hookrightarrow L^\infty(\Omega) \). By \(|E| \) we denote Lebesgue measure of the set \(E \subset \mathbb{R}^n \). Let \(B(x, r) \) denote an open ball in \(\mathbb{R}^n \) with center \(x \) and radius \(r \).

The core of the works [10], [3] is the criterion for (1) when \(\Omega \) is a cube. If \(\Omega \) is a cube, then (1) is equivalent to \(G' \in L^\infty(\mathbb{R}^1) \) for subcritical \(W^{1,p}(\Omega) \) (that is, for \(1 \leq p \leq n \)), and to \(G' \in L^\infty_{\text{loc}}(\mathbb{R}^1) \) for supercritical \(W^{1,p}(\Omega) \) (that is, for \(p > n \)). As a direct consequence of this result we obtain that for an arbitrary open set \(\Omega \subset \mathbb{R}^n \)
\[
T_G : W^{1,p}(\Omega) \to W^{1,p}_{\text{loc}}(\Omega)
\]

is equivalent to \(G' \in L^\infty(\mathbb{R}^1) \) if \(1 \leq p \leq n \), and to \(G' \in L^\infty_{\text{loc}}(\mathbb{R}^1) \) if \(p > n \). Moreover, if for a domain \(\Omega, |\Omega| < \infty \), the exponent \(p = n \), as in the Sobolev imbedding theorem, separates subcritical and supercritical \(W^{1,p}(\Omega) \), then (1) is equivalent to (2). It seems that the broadest class of such domains \(\Omega \) is the class

Received by the editors August 1, 1998 and, in revised form, January 22, 1999.
1991 Mathematics Subject Classification. Primary 46E35; Secondary 47H30.
Key words and phrases. Sobolev spaces, superposition operator.
This work was supported by the Russian Foundation for Basic Research grant 96-01-00243.
of John domains, [10], [2], [5]. For domains with infinite measure one has analogous results provided the condition $G(0) = 0$ is added to the restrictions on G', [10], [3].

For an arbitrary Ω [11] is not equivalent to [2]. For general open sets Ω our main result is Theorem 1 below. For an arbitrary Ω in subcritical case with $p > n$ the condition for (2) is necessary but not sufficient for (1). On the other hand, condition $G' \in L^\infty(\mathbb{R}^1)$ is obviously sufficient for (1), but not necessary for (2) with $p > n$. In this case, in contrast with local constructions in [10], [3], we establish estimates near the boundary.

Our consideration is based on the following criterion for $W^{1,p}(\Omega)$, which was proved by Maz’ya. For $x \in \Omega$ we define

$$V_\Omega(x) = \{ f \in C^\infty_\text{loc}(\Omega) : 0 \leq f \leq 1, f(x) = 1 \}.$$

Relative p-capacity in Ω of a point $x \in \Omega$ with respect to the ball $B(x, r)$ is defined (see [2]) as

$$\text{cap}_p(x, B(x, r); \Omega) = \inf \left\{ \int_\Omega |\nabla f|^p : f \in V_\Omega(x), f|_{\Omega \setminus B(x, r)} \equiv 0 \right\}.$$

Maz’ya [7] proved that $W^{1,p}(\Omega) \not\rightarrow L^\infty(\Omega)$ if and only if

$$\inf \{ \text{cap}_p(x, B(x, r); \Omega) : x \in \Omega \} = 0 \quad \text{for all } r > 0.$$

Note that for $B(x, r) \subset \subset \Omega$ and $p > n$

$$\text{cap}_p(x, B(x, r); \Omega) = c(n, p)r^{n-p} \to \infty \quad \text{as } r \to 0$$

(see [7]).

It should be mentioned that there is a vast literature concerning characterisation of G for T_G to act in Besov and Lizorkin-Triebel spaces on \mathbb{R}^n. We refer to surveys [4], [12], [13], and to the book [11]. Results for superposition operators in other spaces of real functions, such as Lebesgue spaces, BV, and ideal spaces, can be found in [4].

Theorem 1. Let $\Omega \subset \mathbb{R}^n$ be an open set, $|\Omega| < \infty$, $1 \leq p < \infty$. The following conditions on the function $G : \mathbb{R}^1 \to \mathbb{R}^1$ are necessary and sufficient for $T_G : W^{1,p}(\Omega) \to W^{1,p}(\Omega)$:

(i) $G' \in L^\infty(\mathbb{R}^1)$, if $W^{1,p}(\Omega)$ is subcritical.

(ii) $G' \in L^\infty_\text{loc}(\mathbb{R}^1)$, if $W^{1,p}(\Omega)$ is supercritical.

The proof of the theorem is given at the end of the paper. First we make some remarks.

Remark 2. Condition (3) is equivalent to $W^{1,p}(\Omega) \not\rightarrow L^\infty(\Omega)$ also in the case $|\Omega| = \infty$. For open sets Ω of infinite measure Theorem 1 is valid provided we add the obvious necessary condition $G(0) = 0$ in both (i) and (ii). The proof is the same as below.

Remark 3. Let Ω be a connected open set and let ω be an open nonempty set with compact closure $\overline{\omega} \subset \Omega$. Following [2] we introduce the Banach space $L^{1,p}(\Omega)$ with the norm

$$\|u\|_{L^{1,p}(\Omega)} = \|u\|_{L^p(\omega)} + \|\nabla u\|_{L^p(\Omega)}.$$
It is known that norms corresponding to different choices of ω are equivalent (see [7]). If $|\Omega| < \infty$ then condition (3) is equivalent to $L^{1,p}(\Omega) \not\subset L^\infty(\Omega)$ (see [7]). Theorem [1] holds for the space $L^{1,p}(\Omega)$ whenever $|\Omega| < \infty$. The proof is even easier than for $W^{1,p}(\Omega)$, as we do not need to control $\|u\|_{L^p(\Omega)}$

\textbf{Remark 4.} From [3] and [10] it follows that the nonlinear operator T_G in Theorem [1] is bounded and continuous in $W^{1,p}(\Omega)$ as soon as [11] is valid. The same is true for T_G in $L^{1,p}(\Omega)$ provided $|\Omega| < \infty$, and in $W^{1,p}(\Omega)$ if $|\Omega| = \infty$.

\textbf{Proof of Theorem [7].} The only part of the theorem not covered by conditions from [3] for (2) is the necessity for $p > n$ in (i).

Thus we need to prove that if $T_G : W^{1,p}(\Omega) \to W^{1,p}(\Omega)$, $p > n$, and $W^{1,p}(\Omega) \not\subset L^\infty(\Omega)$, then $G' \in L^\infty(\mathbb{R}^1)$. From [3] and [11] it follows that G is absolutely continuous on \mathbb{R}^1 and $G' \in L^\infty_{\text{loc}}(\mathbb{R}^1)$. Moreover, for all $u \in W^{1,p}(\Omega)$ one has $\nabla(G \circ u) = G'(u) \nabla u$ a.e. in Ω.

Seeking a contradiction suppose that $G' \not\in L^\infty(\mathbb{R}^1)$. Then we shall construct a function $U \in W^{1,p}(\Omega)$ such that $\|\nabla(G \circ U)\|_{L^p(\Omega)} = \infty$. To do this we first construct a special sequence of functions $\{u_j\}$, $u_j \in W^{1,p}(\Omega) \cap L^\infty(\Omega) \cap C_{\text{loc}}(\Omega)$ for $j = 1, 2, \ldots$, and a sequence of pairwise disjoint balls $\{B(y_j, r_j)\} = \{B_j\}$, $B_j \subset \subset \Omega$, with the properties

\begin{equation}
\|u_j\|_{L^p(\Omega)} + \left(\int_{\Omega \setminus \bigcup_{m \leq j} B_m} |\nabla u_j|^p\right)^{1/p} \leq \left(1 + \cdots + \frac{1}{2^j}\right) \quad \text{for all } j \geq 1,
\end{equation}

\begin{equation}
u_m|_{B_j} = u_j|_{B_j} \quad \text{for } m \geq j.
\end{equation}

The following inequalities are valid for all $j \geq 1$:

\begin{equation}1/2^j}
\end{equation}

\begin{equation}
\int_{B_j} |\nabla u_j|^p \leq 1/j^2,
\end{equation}

\begin{equation}
\int_{B_j} |G'(u_j)|^p |\nabla u_j|^p \geq C(n),
\end{equation}

with some $C(n) > 0$ independent of j.

By (5)--(7) the sequence $\|u_j\|_{W^{1,p}(\Omega)}$ is bounded, and we can extract a subsequence converging weakly to some function $U \in W^{1,p}(\Omega)$. Now (4) and (8) imply that $\nabla(G \circ U) \not\in L^p(\Omega)$.

We construct the sequences $\{u_j\}$ and $\{B_j\}$ by induction. Using (4) we choose a constant $R = R(n, p)$ such that for $B(z, R) \subset \subset \Omega$

\begin{equation}
\text{cap}_p(z, B(z, R); \Omega) \geq 2.
\end{equation}

Without loss of generality we can assume that $G' \not\in L^\infty(\mathbb{R}^1_+)$, where $\mathbb{R}^1_+ = (0, +\infty)$.

To construct u_1 we take the number t_1 such that $t_1 > 1$, $|G'(t_1)| \geq 1$ and t_1 is a Lebesgue point of G'. The latter implies that

\begin{equation}\left|\left\{s : |t_1 - s| \leq \delta, |G'(s)| \geq 1\right\}\right| \geq \delta
\end{equation}

for all sufficiently small δ. Next we choose $0 < r_1 < R$ so small that $t_1 |B(0, r_1)|^{1/p} < 1/4$. For these t_1 and r_1 using (3) we find a ball $B(y_1, r_1)$, $y_1 \in \Omega$, and a function $v_1 \in V_\Omega(y_1)$ supported in $B(y_1, r_1) \cap \Omega$ such that $\int_{\Omega} |\nabla v_1|^p \leq 1/(4t_1)^p$, or
equivalently
\[
\left(\int_\Omega |\nabla (2t_1 v_1)|^p \right)^{1/p} \leq 1/2.
\]

Now we put \(w_1 = \min\{t_1, 2t_1 v_1 \} \). Note that truncating does not increase norm in \(W^{1,p}(\Omega) \). Thus because of our choice of \(r_1 \) we have
\[
\|w_1\|_{W^{1,p}(\Omega)} \leq \|2t_1 v_1\|_{W^{1,p}(\Omega)} \leq 1.
\]

Note that \(v_1(y_1) = 1 \). Consequently there exists a ball \(B_1 = B(y_1, \rho_1) \subset \subset \Omega \) such that \(w_1|_{B_1} \equiv t_1 \). To finish construction of \(u_1 \) we use the function \(\phi(x) = \max\{1 - |x|, 0\}, x \in \mathbb{R}^n \). We denote \(\phi_* (x) = \phi(x/\varepsilon) \) for \(\varepsilon > 0 \). We can choose \(a > 0 \) so small that \(u_1 \) is satisfied for \(\delta = a, \varepsilon < \rho_1 \) such that
\[
\|a\phi_*\|_{L^p(\mathbb{R}^n)} \leq C_1(n)\varepsilon^{n/p} \leq 1/2,
\]
\[
\int_{\mathbb{R}^n} |\nabla (a\phi_*)|^p = C_2(n)a^p/\varepsilon^{n-p} = 1/2.
\]

Note that (10) and the linear radial nature of \(\phi \) imply that for such \(a \)
\[
\left\{|z \in \mathbb{R}^n : |z| < \varepsilon, |G' \circ (t_1 + a\phi_*)(z)| \geq 1\right\} \geq C_3(n)\varepsilon^n.
\]

Therefore one also has
\[
(11) \quad \int_{\mathbb{R}^n} |\nabla (G \circ (t_1 + a\phi_*)|^p \geq C_3(n)a^p/\varepsilon^{n-p} \geq C_3(n)/2C_2(n).
\]

Now taking \(u_1(x) = w_1(x) + a\phi_*(x - y_1), x \in \Omega \), we see that \(u_1 \in W^{1,p}(\Omega) \cap L^\infty(\Omega) \cap C_{\text{loc}}(\Omega) \) and (10), (7), (8) are valid for \(j = 1 \).

Now we construct \(u_k \) assuming that the functions \(u_1, \ldots, u_{k-1} \) and the balls \(B_1, \ldots, B_{k-1} \) with all required properties have already been constructed. We can find \(t_k \) such that
\[
(12) \quad t_k \geq 4\|u_{k-1}\|_{L^\infty(\Omega)},
\]
\[
|G'(t_k)| \geq k, \text{ and } t_k \text{ is a Lebesgue point of } G'. \text{ Next we choose } 0 < r_k < R \text{ so small that}
\]
\[
(13) \quad 4r_k \leq \min\{\text{dist}(B_j, \partial \Omega), j = 1, \ldots, k - 1\},
\]
and \(t_k|B(0, r_k)|^{1/p} < 1/2^{k+2} \). For \(r_k, t_k \) we find, using (10), a ball \(B(y_k, r_k), y_k \in \Omega \), and a function \(v_k \in V_{\Omega}(y_k) \) supported in \(B(y_k, r_k) \cap \Omega \) such that
\[
(14) \quad \left(\int_\Omega |\nabla (2t_k v_k)|^p \right)^{1/p} \leq 1/2^{k+2}.
\]

We note that (10) and (14) imply that \(\partial B(y_k, r_k) \cap \partial \Omega \neq \emptyset \). Thus \(B(y_k, r_k) \) does not intersect any of \(B_1, \ldots, B_{k-1} \) because of (13). We define \(u_k \) in a similar way as \(w_1 \). Let \(w_k = \min\{t_k, u_{k-1} + 2t_k v_k\} \). Because of (12) \(w_k \) coincides with \(u_{k-1} \) in the balls \(B_1, \ldots, B_{k-1} \). From (12) one has \(u_{k-1}(y_k) + 2t_k v_k(y_k) > t_k \). Therefore there is a ball \(B_k = B(y_k, \rho_k) \subset \subset \Omega, B_k \subset B(y_k, r_k) \), not intersecting \(B_1, \ldots, B_{k-1} \), such that \(w_k|_{B_k} \equiv t_k \). By induction we have the estimate
\[
\|w_k\|_{W^{1,p}(\Omega)} \leq \left(1 + \ldots + \frac{1}{2^{k-1}} + \frac{1}{2^{k+1}} \right).
\]
To construct u_k we modify w_k in the ball B_k. We use the function $a\phi_\varepsilon$ defined as above. We choose a and ε such that $\text{supp}(a\phi_\varepsilon) \subset B_k$.

\begin{equation}
\{s : |t_k - s| \leq a, |G'(s)| \geq k\} \geq a,
\end{equation}
\begin{equation}
\|a\phi_\varepsilon\|_{L^p(\mathbb{R}^n)} \leq 1/2^{k+1},
\end{equation}
\begin{equation}
\int_{\mathbb{R}^n} |\nabla (a\phi_\varepsilon)|^p = 1/k^2.
\end{equation}

By analogy with (11) from (15) and (16) we have
\begin{equation}
\int_{\mathbb{R}^n} |\nabla (G \circ (t_k + a\phi_\varepsilon))|^p \geq C_4(n)k^p/k^2 \geq C_5(n).
\end{equation}

Now we define $u_k(x) = w_k(x) + a\phi_\varepsilon(x - y_k)$, and (5)--(8) hold. This completes the proof.

REFERENCES