Convergence of paths for pseudo-contractive mappings in Banach spaces

Authors:
Claudio H. Morales and Jong Soo Jung

Journal:
Proc. Amer. Math. Soc. **128** (2000), 3411-3419

MSC (1991):
Primary 47H10

Published electronically:
May 18, 2000

MathSciNet review:
1707528

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Let be a real Banach space, let be a closed convex subset of , and let , from into , be a pseudo-contractive mapping (i.e. for all and . Suppose the space has a uniformly Gâteaux differentiable norm, such that every closed bounded convex subset of enjoys the Fixed Point Property for nonexpansive self-mappings. Then the path , , defined by the equation is continuous and strongly converges to a fixed point of as , provided that satisfies the weakly inward condition.

**1.**Edgar Asplund,*Positivity of duality mappings*, Bull. Amer. Math. Soc.**73**(1967), 200–203. MR**0206663**, 10.1090/S0002-9904-1967-11678-1**2.**V. Barbu and Th. Precupanu,*Convexity and optimization in Banach spaces*, Revised edition, Editura Academiei, Bucharest; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978. Translated from the Romanian. MR**0513634****3.**Felix E. Browder,*Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces*, Arch. Rational Mech. Anal.**24**(1967), 82–90. MR**0206765****4.**Felix E. Browder,*Nonlinear mappings of nonexpansive and accretive type in Banach spaces.*, Bull. Amer. Math. Soc.**73**(1967), 875–882. MR**0232255**, 10.1090/S0002-9904-1967-11823-8**5.**R. E. Bruck, W. A. Kirk, and S. Reich,*Strong and weak convergence theorems for locally nonexpansive mappings in Banach spaces*, Nonlinear Anal.**6**(1982), no. 2, 151–155. MR**651696**, 10.1016/0362-546X(82)90083-9**6.**Michael G. Crandall,*Differential equations on convex sets*, J. Math. Soc. Japan**22**(1970), 443–455. MR**0268491****7.**Mahlon M. Day,*Reflexive Banach spaces not isomorphic to uniformly convex spaces*, Bull. Amer. Math. Soc.**47**(1941), 313–317. MR**0003446**, 10.1090/S0002-9904-1941-07451-3**8.**Klaus Deimling,*Zeros of accretive operators*, Manuscripta Math.**13**(1974), 365–374. MR**0350538****9.**J.-P. Gossez and E. Lami Dozo,*Some geometric properties related to the fixed point theory for nonexpansive mappings*, Pacific J. Math.**40**(1972), 565–573. MR**0310717****10.**Benjamin Halpern,*Fixed points of nonexpanding maps*, Bull. Amer. Math. Soc.**73**(1967), 957–961. MR**0218938**, 10.1090/S0002-9904-1967-11864-0**11.**Jong Soo Jung and Seong Sik Kim,*Strong convergence theorems for nonexpansive nonself-mappings in Banach spaces*, Nonlinear Anal.**33**(1998), no. 3, 321–329. MR**1617964**, 10.1016/S0362-546X(97)00526-9**12.**Tosio Kato,*Nonlinear semigroups and evolution equations*, J. Math. Soc. Japan**19**(1967), 508–520. MR**0226230****13.**W. A. Kirk,*A fixed point theorem for local pseudocontractions in uniformly convex spaces*, Manuscripta Math.**30**(1979/80), no. 1, 89–102. MR**552364**, 10.1007/BF01305991**14.**W. A. Kirk and Claudio Morales,*On the approximation of fixed points of locally nonexpansive mappings*, Canad. Math. Bull.**24**(1981), no. 4, 441–445. MR**644533**, 10.4153/CMB-1981-067-0**15.**R. H. Martin Jr.,*Differential equations on closed subsets of a Banach space*, Trans. Amer. Math. Soc.**179**(1973), 399–414. MR**0318991**, 10.1090/S0002-9947-1973-0318991-4**16.**Claudio Morales,*On the fixed-point theory for local 𝑘-pseudocontractions*, Proc. Amer. Math. Soc.**81**(1981), no. 1, 71–74. MR**589138**, 10.1090/S0002-9939-1981-0589138-4**17.**Claudio H. Morales,*Strong convergence theorems for pseudo-contractive mappings in Banach space*, Houston J. Math.**16**(1990), no. 4, 549–557. MR**1097087****18.**W. V. Petryshyn,*A characterization of strict convexity of Banach spaces and other uses of duality mappings*, J. Functional Analysis**6**(1970), 282–291. MR**0287289****19.**Simeon Reich,*Iterative methods for accretive sets*, Nonlinear equations in abstract spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex., 1977) Academic Press, New York, 1978, pp. 317–326. MR**502549****20.**Simeon Reich,*Strong convergence theorems for resolvents of accretive operators in Banach spaces*, J. Math. Anal. Appl.**75**(1980), no. 1, 287–292. MR**576291**, 10.1016/0022-247X(80)90323-6**21.**Wataru Takahashi and Gang-Eun Kim,*Strong convergence of approximants to fixed points of nonexpansive nonself-mappings in Banach spaces*, Nonlinear Anal.**32**(1998), no. 3, 447–454. MR**1610606**, 10.1016/S0362-546X(97)00482-3**22.**Hong-Kun Xu,*Approximating curves of nonexpansive nonself-mappings in Banach spaces*, C. R. Acad. Sci. Paris Sér. I Math.**325**(1997), no. 2, 151–156 (English, with English and French summaries). MR**1467068**, 10.1016/S0764-4442(97)84590-9**23.**V. Zizler,*On some rotundity and smoothness properties of Banach spaces*, Dissertationes Math. Rozprawy Mat.**87**(1971), 33 pp. (errata insert). MR**0300060**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47H10

Retrieve articles in all journals with MSC (1991): 47H10

Additional Information

**Claudio H. Morales**

Affiliation:
Department of Mathematics, University of Alabama, Huntsville, Alabama 35899

Email:
morales@math.uah.edu

**Jong Soo Jung**

Affiliation:
Department of Mathematics, Dong-A University, Pusan 604-714, Korea

Email:
jungjs@mail.donga.ac.kr

DOI:
https://doi.org/10.1090/S0002-9939-00-05573-8

Keywords:
Pseudo-contractive mappings,
uniformly Gâteaux differentiable norm.

Received by editor(s):
September 18, 1998

Received by editor(s) in revised form:
January 22, 1999

Published electronically:
May 18, 2000

Additional Notes:
This paper was carried out while the second author was visiting the University of Alabama in Huntsville under the financial support of the LG Yonam Foundation, 1998, and he would like to thank Professor Claudio H. Morales for his hospitality in the Department of Mathematics.

Communicated by:
David R. Larson

Article copyright:
© Copyright 2000
American Mathematical Society