Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the pointwise maximum of convex functions


Authors: S. P. Fitzpatrick and S. Simons
Journal: Proc. Amer. Math. Soc. 128 (2000), 3553-3561
MSC (2000): Primary 46N10, 49J52, 49N15
Published electronically: May 18, 2000
MathSciNet review: 1690986
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the conjugate of the maximum, $f \vee g$, of $f$ and $g$ when $f$ and $g$ are proper convex lower semicontinuous functions on a Banach space $E$. We show that $(f \vee g)^{**} = f^{**} \vee g^{**}$ on the bidual, $E^{**}$, of $E$ provided that $f$and $g$ satisfy the Attouch-Brézis constraint qualification, and we also derive formulae for $(f \vee g)^{*}$ and for the ``preconjugate'' of $f^{*}\vee g^{*}$.


References [Enhancements On Off] (What's this?)

  • [1] Hédy Attouch and Haïm Brezis, Duality for the sum of convex functions in general Banach spaces, Aspects of mathematics and its applications, North-Holland Math. Library, vol. 34, North-Holland, Amsterdam, 1986, pp. 125–133. MR 849549, 10.1016/S0924-6509(09)70252-1
  • [2] Ky Fan, Minimax theorems, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 42–47. MR 0055678
  • [3] Jean-Pierre Gossez, Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs, J. Math. Anal. Appl. 34 (1971), 371–395 (French). MR 0313890
  • [4] Heinz König, Über das von Neumannsche Minimax-Theorem, Arch. Math. (Basel) 19 (1968), 482–487 (German). MR 0240600
  • [5] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209–216. MR 0262827
  • [6] Stephen Simons, Critères de faible compacité en termes du théorème du minimaux, Séminaire Choquet, 10e année (1970/71), Initiation à l’analyse, Fasc. 2, Exp. No. 24, Secrétariat Mathématique, Paris, 1971, pp. 5 (French). MR 0477705
  • [7] S. Traoré and M. Volle, On the level sum of two convex functions on Banach spaces, J. Convex Anal. 3 (1996), no. 1, 141–151. MR 1422757
  • [8] Michel Volle, Sous-différentiel d’une enveloppe supérieure de fonctions convexes, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 9, 845–849 (French, with English and French summaries). MR 1246651

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46N10, 49J52, 49N15

Retrieve articles in all journals with MSC (2000): 46N10, 49J52, 49N15


Additional Information

S. P. Fitzpatrick
Affiliation: Department of Mathematics and Statistics, University of Western Australia, Nedlands 6907, Australia
Email: fitzpatr@maths.uwa.edu.au

S. Simons
Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106-3080
Email: simons@math.ucsb.edu

DOI: https://doi.org/10.1090/S0002-9939-00-05449-6
Keywords: Banach space, convex function, conjugate, biconjugate, maximum, Attouch-Br\'{e}zis constraint qualification, preconjugate
Received by editor(s): May 11, 1998
Received by editor(s) in revised form: January 29, 1999
Published electronically: May 18, 2000
Dedicated: This paper is dedicated to Professor Robert Phelps
Communicated by: Dale Alspach
Article copyright: © Copyright 2000 American Mathematical Society