ISOMETRICAL EMBEDDINGS OF SEPARABLE BANACH SPACES INTO THE SET OF NOWHERE APPROXIMATIVELY DIFFERENTIABLE AND NOWHERE HÖLDER FUNCTIONS

STANISLAV HENCL

(Communicated by Dale Alspach)

ABSTRACT. The well-known Banach-Mazur theorem says that every separable Banach space can be isometrically embedded into \(C([0,1]) \). We prove that this embedding can have the property that the image of each nonzero element is a nowhere approximatively differentiable and nowhere Hölder function. It improves a recent result of L. Rodriguez-Piazza where the images are nowhere differentiable functions.

INTRODUCTION

The well-known Banach-Mazur theorem says that every separable Banach space can be isometrically embedded into \(C([0,1]) \). We prove that this embedding can have the property that the image of each nonzero element is a nowhere approximatively differentiable and nowhere Hölder function. It improves a recent result of L. Rodriguez-Piazza [2] where the images are nowhere differentiable functions (for references about results concerning embeddings into subsets of \(C([0,1]) \) see [2]).

The basic idea of our proof is the same as in [2] but we use a more complicated construction which uses an idea of Malý and Zajíček [1].

Let \(\Delta \) be the Cantor set. It is well known that every separable Banach space is isometric to a subspace of \(C(\Delta) \) so the following theorem will be enough to obtain the announced result.

Theorem 1. There exist a closed subset \(K \) of \([0,1]\) homeomorphic to the Cantor set \(\Delta \) and a linear operator \(F : C(K) \to C([0,1]) \) such that for every \(f \in C(K) \setminus \{0\} \) we have:

(i) \(Ff(t) = f(t) \) for every \(t \in K \), so \(Ff \) is a continuous extension of \(f \) to the whole interval.

(ii) \(\| f \|_\infty = \| Ff \|_\infty \), so \(Ff \) is an isometry.

(iii) \(Ff \) is nowhere approximatively differentiable and nowhere Hölder function.

In fact we will prove a stronger result:

Proposition 2. Let \(\varphi : [0,\infty) \to [0,\infty) \) be a continuous increasing function such that \(\varphi(0) = 0 \). Then there exist a closed subset \(K \) of \([0,1]\) homeomorphic to the Cantor set \(\Delta \) and a linear operator \(F : C(K) \to C([0,1]) \) such that for every \(f \in C(K) \setminus \{0\} \) we have:

Received by the editors January 22, 1999.

1991 Mathematics Subject Classification. Primary 26A27, 46B04.
(i) \(Ff(t) = f(t) \) for every \(t \in K \).
(ii) \(\| f \|_{\infty} = \| Ff \|_{\infty} \).
(iii) For all \(n \in \mathbb{N} \) it holds that the set \(D_z = \{ y \in [0,1] : \frac{|Ff(z) - Ff(y)|}{|z - y|} > n \} \) has the symmetric upper density 1 at \(z \) for all \(z \in (0,1) \), the set \(D_0 \) has the right upper density 1 at point 0 and the set \(D_1 \) has the left upper density 1 at point 1.

Remark. Proposition 2 not only gives us that \(Ff \) does not have finite approximate derivative but also that \(Ff \) does not have a finite one-sided preponderant derivative as well (for definition of the preponderant derivative see [3, pages 112–113]).

As a by-product of our construction we will obtain:

Proposition 3. There exists a nonempty perfect set \(K \subset [0,1] \) such that every continuous function on \(K \) can be extended to \([0,1]\) such that every point \(z \in [0,1] \) is a Jarník point of the extension.

Recall definitions of some notions used above. Suppose that \(f \) is measurable on \([0,1]\).

Let \(x \in [0,1] \) and \(r \in \overline{\mathbb{R}} \). We say that \(\text{ap-lim}_{y \rightarrow x} f = r \), if for each neighborhood \(U \) of \(r \)
\[
\lim_{h \rightarrow 0^+} \frac{|\{y \in [x - h, x + h] \cap [0,1] : f(y) \in U\}|}{|x - h, x + h| \cap [0,1]|} = 1,
\]
where \(|M| \) denotes the Lebesgue measure on \(\mathbb{R} \). The function \(f \) is said to be approximatively differentiable at a point \(x \in [0,1] \) if there exists \(L \in \mathbb{R} \) such that
\[
\text{ap-lim}_{y \rightarrow x} \frac{f(y) - f(x)}{y - x} = L.
\]
A point \(x \in [0,1] \) is a Jarník point of \(f \) if
\[
\text{ap-lim}_{y \rightarrow x} \frac{|f(y) - f(x)|}{|y - x|} = \infty.
\]
We say that \(f \) on \([0,1]\) is a nowhere Hölder function if for all \(x \in [0,1] \) and \(\alpha > 0 \)
\[
\sup_{y \in [0,1]} \frac{|f(x) - f(y)|}{|x - y|^\alpha} = \infty
\]
holds.

If we apply Proposition 2 for \(\varphi(t) = -\frac{1}{\ln t} \) we get that property (iii) of Proposition 2 clearly implies property (iii) of Theorem 1. Thus we devote the rest of the paper to the proofs of Proposition 2 and Proposition 3.

Construction of useful sequences

Let \(\varphi \) be as in Proposition 2. Put \(\psi = \sqrt{\varphi} \). We can clearly find a sequence \(\{a_n\}_{n=1}^\infty \) such that \(1 > a_n > 0 \),
\[
(1) \quad \sum_{j=n+1}^\infty a_j \leq \frac{a_n}{2n},
\]
\[
(2) \quad \sum_{j=n}^\infty a_j \leq \frac{1}{2n}.
\]
Further define inductively a sequence \(\{p_n\}_{n=1}^{\infty} \) such that \(p_n > 0 \,

\begin{align*}
(3) & \quad p_1 < \frac{1}{10}, \\
(4) & \quad 2\psi((n-1)p_{n-1}) \leq \frac{a_n}{n} \text{ for } n = 2, 3, \ldots, \\
(5) & \quad 2\pi p_n \sum_{j=1}^{n-1} \frac{a_j}{p_j} \leq \frac{a_n}{n} \text{ for } n = 2, 3, \ldots, \\
(6) & \quad a_n \sqrt{n-1} p_{n-1} > 10np_n \text{ for } n = 2, 3, \ldots, \\
(7) & \quad np_n \searrow 0.
\end{align*}

Put
\[\lambda_n = \sqrt{np_n} \quad \text{for } n \in \mathbb{N}. \]

Construction of \(K \)

Define \(I_{0,1} = [0,1] \) and \(\lambda_0 = 1 \). For every \(n \in \mathbb{N} \) we will choose \(2^n \) pairwise disjoint closed intervals \(\{I_{n,j}\}_{j=1}^{2^n} \) in \([0,1]\), \(I_{n,j} = [c_{n,j}, d_{n,j}] \), such that \(|I_{n,j}| = \lambda_n \). We will also require that
\begin{align*}
(9) & \quad I_{n,2j-1} \cup I_{n,2j} \subseteq \text{Int}(I_{n-1,1}), \\
(10) & \quad \frac{c_{n,1}}{p_n} \in \mathbb{N}, \frac{c_{n,j+1} - d_{n,j}}{p_n} \in \mathbb{N} \text{ for all } j \in \{1, \ldots, 2^n - 1\}, \\
(11) & \quad c_{n,2j-1} - c_{n-1,j} \geq \frac{\lambda_{n-1}}{5}, \ c_{n,2j} - d_{n,2j-1} \geq \frac{\lambda_{n-1}}{5} \text{ and } d_{n-1,j} - d_{n,2j} \geq \frac{\lambda_{n-1}}{5}.
\end{align*}

Let us define intervals \(I_{n,j} \). Suppose that for a certain \(n \in \mathbb{N} \) we have defined all \(I_{n-1,j} \). Divide each \(I_{n-1,j} \) into five intervals of equal length \(\frac{\lambda_{n-1}}{5} \). If we choose the interval \(I_{n,2j-1} \) inside the second one, and \(I_{n,2j} \) inside the fourth one, then (9) and (11) clearly hold. Since by (6) and (8) \(p_n + \lambda_n < \frac{\lambda_{n-1}}{5} \), it is easy to see that we can choose subsequently \(I_{n,1}, I_{n,2}, \ldots, I_{n,2^n} \) such that moreover \(|I_{n,j}| = \lambda_n \) and (10) holds.

Put \(K_n = I_{n,1} \cup I_{n,2} \cup \cdots \cup I_{n,2^n} \) and \(K = \bigcap_{n \geq 1} K_n \). Clearly \(K \) is homeomorphic to the Cantor set.

Lemma 1. Let \(n > 2 \) and \((z-h, z+h) \subset [0,1] \) be an interval such that \(h \leq (n-1)p_{n-1} \). Then \((z+h, z-h) \) intersects at most two components of \(K_n \).

Proof. Thanks to (6) and (8) we have
\[2h \leq 2(n-1)p_{n-1} < \frac{1}{5} \sqrt{n-2p_{n-2}} = \frac{\lambda_{n-2}}{5}. \]

So by (11) we obtain that \((z-h, z+h)\) intersects at most one component of \(K_{n-1} \) and thus at most two components of \(K_n \). \(\square \)
CONSTRUCTION OF T

Construction of T is analogous to the construction in Lemma 2 from Rodriguez-Piazza \[2\].

Lemma 2. There exists a linear $T : C(K) \to C([0, 1])$ such that for all $f \in C(K)$:

(a) $Tf(t) = f(t)$ for all $t \in K$.

(b) $|Tf(t)| \leq \left(1 - \frac{1}{2^n}\right) \| f \|_\infty$ for all $t \notin K_n$.

(c) Let $n > 1$. If $I \subset [0, 1]$ is an interval such that $I \cap K_n = \emptyset$, then Tf is Lipschitz on I with the constant $\left(\frac{2\| f \|_\infty}{\sqrt{n} - 1}\right)$.

Proof. For every $n \geq 0$ and every $j \in \{1, \ldots, 2^n\}$ pick a point $x_{n,j} \in I_{n,j} \cap K$. We define $Tf(t) = f(t)$ for every $t \in K$. For every $n \geq 0$ and every $j \in \{1, \ldots, 2^n\}$, we define

$$Tf(c_{n,j}) = Tf(d_{n,j}) = f(x_{n,j}) \left(1 - \frac{1}{2^n}\right).$$

Extend Tf affinely on every interval $[a, b]$ where f has been defined in points a, b above and f has not been defined in points of interval (a, b) above. Conditions (a) and (b) are clearly fulfilled. It is easy to see that F is a linear operator and it is obvious that Ff is a continuous function on $[0, 1]$. Now verify (c). Clearly $|f(a) - f(b)| \leq 2\| f \|_\infty$ for endpoints a, b of any interval (a, b) on which f has been defined affinely and (11) implies that every such interval which does not intersect K_n has the length at least $\frac{1}{5}\sqrt{n} - 1p_{n-1} = \frac{\lambda_{n-1}}{5}$. \qed

CONSTRUCTION OF F

Choose a sequence $\{y_n\}_{n=1}^\infty$ dense in K and define functions f_n:

$$f_n(t) = 0 \text{ for } t \in K_n,$$

$$f_n(t) = a_n \sin \left(\frac{2\pi t}{p_n}\right) \text{ for } t \in [0, c_{n,1}],$$

$$f_n(t) = a_n \sin \left(\frac{2\pi (t - d_{n,j})}{p_n}\right) \text{ for } t \in [d_{n,j}, c_{n,j+1}],$$

$$f_n(t) = a_n \sin \left(\frac{2\pi (t - d_{n,2^n})}{p_n}\right) \text{ for } t \in [d_{n,2^n}, 1].$$

Notice that

$$f_n(c_{n,1}) = f_n(c_{n,j+1}) = 0$$

by (10). Put

$$Ff(t) = Tf(t) + \sum_{n=1}^\infty f(y_n) f_n(t).$$

Thanks to (2) this series converges uniformly. Thanks to (2) and Lemma 2, $F : C(K) \to C([0, 1])$ is a linear isometry so conditions (i) and (ii) from Proposition 2 are fulfilled.
Properties of \(F \)

We will need the following simple fact.

Lemma 3. Let \(I \) be an interval of length \(p > 0 \), \(M \subset I \), \(0 < \alpha < 1 \) and \(\beta \in \mathbb{R} \).
For all \(x, y \in M \) let
\[
\left| \sin\left(\frac{2\pi x}{p} + \beta\right) - \sin\left(\frac{2\pi y}{p} + \beta\right) \right| \leq \alpha.
\]
Then \(|M| \leq \frac{3\alpha}{\pi} \arccos(1 - \alpha) \).

Proof. Lemma 3 is proved in [1, Lemma 1] in the special case \(\beta = 0 \). Applying this [1, Lemma 1] to the interval \(I^* = I - \frac{p\beta}{2\pi} \) and the set \(M^* = M - \frac{p\beta}{2\pi} \) we obtain our lemma.

Choose \(z \in [0, 1] \) and denote \(\tilde{f} = F(f) \). We shall prove that, if \(f \neq 0 \), then for \(\tilde{f} \) condition (iii) from Proposition 2 holds. It is enough to prove that
\[
(12)
\]
the set \(S = \{ x : |\tilde{f}(x) - \tilde{f}(z)| \leq \psi(|x - z|) \} \) has symmetric lower density 0 at \(Z \) for \(z \in (0, 1) \) and one-sided lower density 0 at points 0 and 1.

Choose arbitrary \(1 > \delta > 0 \) and put \(M = \{ n : |f(y_n)| > \delta \| f \|_{\infty} \} \). If \(f \neq 0 \), then \(\text{card}(M) = \infty \). Choose an arbitrary \(0 < h < p_1 \). Thanks to (7) there is a unique \(n = n(h) \) such that \(np_n < h \leq (n - 1)p_{n-1} \). First prove that
\[
(13)
\]
if \(n \in M \) is big enough and \(I \subset (z - h, z + h) \setminus K_n \) is an interval of length \(p_n \), then
\[
\frac{|I \cap S|}{|I|} < \arccos\left(1 - \frac{C}{n}\right),
\]
where \(C = 4 \max\left(\frac{1}{\delta}, \frac{1}{\delta \| f \|_{\infty}}\right) \). Choose \(x, y \in S \cap I \). The definition of \(S \) and (4) give
\[
|\tilde{f}(x) - \tilde{f}(y)| \leq |\tilde{f}(x) - \tilde{f}(z)| + |\tilde{f}(y) - \tilde{f}(z)| \leq \psi(|x - z|) + \psi(|y - z|)
\leq 2\psi((n - 1)p_{n-1}) \leq \frac{a_n}{n}.
\]

Put \(s_n(x) = \sum_{j=1}^{n} f(y_j) f_j(x) \) and \(r_n(x) = \sum_{j=n+1}^{\infty} f(y_j) f_j(x) \). From (1) and (4) we have
\[
|s_{n-1}(x) - s_{n-1}(y)| \leq |x - y| \sup_{t \in [x, y]} |(s'_{n-1})(t)|
\leq 2\pi|x - y| \| f \|_{\infty} \sum_{i=1}^{n-1} \frac{a_i}{p_i} \leq 2\pi p_n \| f \|_{\infty} \sum_{i=1}^{n-1} \frac{a_i}{p_i} \leq \frac{a_n}{n} \| f \|_{\infty}
\text{and}
\]
\[
|r_n(x) - r_n(y)| \leq 2\| f \|_{\infty} \sum_{j=n+1}^{\infty} a_j \leq \frac{a_n}{n} \| f \|_{\infty}.
\]
Now from Lemma 2 (c) and (6) we obtain

\[|T f(x) - T f(y)| \leq |x - y| \frac{2 \| f \|_\infty}{\sqrt[6]{n - 1}} \leq p_n \frac{2 \| f \|_\infty}{\sqrt[6]{n - 1}} \leq a_n \frac{\| f \|_\infty}{n} \cdot \]

Since \(f(y_n) f_n = \tilde{f} - r_n - s_{n-1} - T f \), we obtain

\[
\left| \sin \left(\frac{2\pi x}{p_n} + \beta \right) - \sin \left(\frac{2\pi y}{p_n} + \beta \right) \right| = \frac{1}{a_n|f(y_n)|} |f(y_n) f_n(x) - f(y_n) f_n(y)| \\
\leq \frac{1}{a_n|f(y_n)|} (|\tilde{f}(x) - \tilde{f}(y)| + |s_{n-1}(x) - s_{n-1}(y)|) \\
+ |r_n(x) - r_n(y)| + |T f(x) - T f(y)|) \\
\leq \frac{1}{\delta \| f \|_\infty} + \frac{3}{\delta \| f \|_\infty} n \leq \max \left(\frac{1}{\delta \| f \|_\infty}, \frac{1}{\delta \| f \|_\infty} \right) = \frac{C}{n}. \]

Thus Lemma 3 gives that

\[|I \cap S| \leq \frac{3p_n}{\pi} \arccos \left(1 - \frac{C}{n} \right) \quad \text{whenever} \quad \frac{C}{n} < 1. \]

So (13) really holds for \(n \) big enough.

Choose arbitrary \(z \in [0, 1) \) and \(h < 1 - z \). From Lemma 1 we get that \((z, z + h)\) intersects at most two components of \(K_n(h) \) and \(h > n(h)p_n \) so \(\lim_{h \to 0^+} n(h) = \infty \), we obtain

\[|S \cap (z, z + h)| = 0. \]

This all together gives us

\[\lim_{n(h) \in M} \frac{|S \cap (z, z + h)|}{n(h)} = 0. \]

Analogously for \(z \in (0, 1] \) it holds that

\[\lim_{n(h) \in M} \frac{|S \cap (z - h, z)|}{n(h)} = 0. \]

Since \(\text{card}(M) = \infty \), we obtain that (12) holds and we are done.

Proof of Proposition 3. If \(f(t) \neq 0 \) for all \(t \in K \), then there exists \(1 > \delta > 0 \) such that \(M = \mathbb{N} \). In this case our construction gives us that \(\lim_{h \to 0^+} \frac{|S \cap (z, z + h)|}{h} = 0 \) and \(\lim_{h \to 0^+} \frac{|S \cap (z - h, z)|}{h} = 0 \). So every point \(z \in [0, 1] \) is a Jarník point of \(F f \).

For a given continuous function \(f \) on \(K \) find \(c \in \mathbb{R} \) such that \(f(t) + c \neq 0 \) for all \(t \in K \). Then \(F(f + c) - c \) is the desired extension of \(f \).
ACKNOWLEDGEMENT

The author would like to thank Professor L. Zajíček for proposing the problem treated here and for interesting discussions and valuable comments.

REFERENCES

Department of Mathematical Analysis, Charles University, Sokolovska 83, 186 00 Prague 8, Czech Republic
E-mail address: Hencl@karlin.mff.cuni.cz