Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Serial subalgebras of finitary Lie algebras


Authors: Felix Leinen and Orazio Puglisi
Journal: Proc. Amer. Math. Soc. 129 (2001), 45-51
MSC (1991): Primary 17B65, 17B50
DOI: https://doi.org/10.1090/S0002-9939-00-05496-4
Published electronically: July 27, 2000
MathSciNet review: 1694350
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

A Lie subalgebra $L$ of ${\mathfrak{gl}_{{\mathbb{K}}}(V)}$ is said to be finitary if it consists of elements of finite rank. We show that, if $L$ acts irreducibly on $V$, and if $V$ is infinite-dimensional, then every non-trivial ascendant Lie subalgebra of $L$ acts irreducibly on $V$ too. When $\operatorname{Char} \mathbb{K}\neq 2$, it follows that the locally solvable radical of such $L$ is trivial. In general, locally solvable finitary Lie algebras over fields of characteristic $\neq 2$ are hyperabelian.


References [Enhancements On Off] (What's this?)

  • [1] R. K. Amayo and I. Stewart, Infinite-dimensional Lie algebras, Noordhoff International Publishing, Leyden, 1974. MR 53:570
  • [2] A. A. Baranov, Diagonal locally finite Lie algebras and a version of Ado's theorem, J. Algebra 199 (1998), 1-39. MR 99f:17026
  • [3] A. A. Baranov, Simple diagonal locally finite Lie algebras, Proc. London Math. Soc. (3) 77 (1998), 362-386. MR 99k:17041
  • [4] A. A. Baranov, Finitary simple Lie algebras, J. Algebra 219 (1999), 299-329. CMP 99:17
  • [5] N. Jacobson, Lie algebras, J. Wiley & Sons, New York - London, 1962. MR 26:1345
  • [6] F. Leinen, Absolute irreducibility for finitary linear groups, Rend. Sem. Mat. Univ. Padova 92 (1994), 59-61. CMP 95:09
  • [7] F. Leinen and O. Puglisi, Countable recognizability of primitive periodic finitary linear groups, Math. Proc. Camb. Phil. Soc. 121 (1997), 425-435. MR 98b:20079
  • [8] F. Leinen and O. Puglisi, Irreducible finitary Lie algebras over fields of characteristic zero, J. Algebra 210 (1998), 697-702. MR 99m:17030
  • [9] F. Leinen and O. Puglisi, Irreducible finitary Lie algebras over fields of positive characteristic, Math. Proc. Camb. Phil. Soc. (to appear).
  • [10] U. Meierfrankenfeld, Ascending subgroups of irreducible finitary linear groups, J. London Math. Soc. (2) 51 (1995), 75-92. MR 96c:20092
  • [11] U. Meierfrankenfeld, R. E. Phillips and O. Puglisi, Locally solvable finitary linear groups, J. London Math. Soc. (2) 47 (1993), 31-40. MR 94c:20064
  • [12] R. E. Phillips, Finitary linear groups: a survey, Finite and locally finite groups (B. Hartley, G. M. Seitz, A. V. Borovik and R. M. Bryant, eds.), NATO ASI Series C 471, Kluwer Academic Publishers, Dordrecht, 1995, pp. 111-146. MR 96m:20080
  • [13] R. E. Phillips and J. Wald, Locally solvable finitary Lie algebras, Comm. Algebra 26 (1998), 4375-4384. MR 99j:17007
  • [14] I. Stewart, Lie algebras generated by finite-dimensional ideals, Pitman Publishing, London - San Francisco - Melbourne, 1975. MR 55:12782
  • [15] H. Strade and R. Farnsteiner, Modular Lie algebras and their representations, Marcel Dekker, New York - Basel, 1988. MR 89h:17021
  • [16] H. Zassenhaus, Darstellungstheorie nilpotenter Lie-Ringe bei Charakteristik $p> 0$, J. Reine Angew. Math. 182 (1940), 150-155. MR 2:121c

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 17B65, 17B50

Retrieve articles in all journals with MSC (1991): 17B65, 17B50


Additional Information

Felix Leinen
Affiliation: Fachbereich 17 – Mathematik, Johannes Gutenberg–Universität Mainz, D–55099 Mainz, Germany
Address at time of publication: Department of Mathematics, University of Newcastle, Newcastle upon Tyne NE1 7RU, United Kingdom
Email: Leinen@mathematik.uni-mainz.de, F.A.Leinen@ncl.ac.uk

Orazio Puglisi
Affiliation: Dipartimento di Matematica, Università degli Studi di Trento, I–38050 Povo (Trento), Italy
Email: puglisi@alpha.science.unitn.it

DOI: https://doi.org/10.1090/S0002-9939-00-05496-4
Keywords: Lie algebra, finitary endomorphism, serial subalgebra, locally solvable radical, Hirsch-Plotkin radical
Received by editor(s): September 3, 1998
Received by editor(s) in revised form: March 22, 1999
Published electronically: July 27, 2000
Communicated by: Roe Goodman
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society