A NOTE ON HAMILTON SEQUENCES FOR EXTREMAL BELTRAMI COEFFICIENTS

SHEN YU-LIANG

(Communicated by Albert Baernstein II)

Abstract. F. P. Gardiner gave a sufficient condition for a sequence to be a Hamilton sequence for an extremal Beltrami coefficient. In this note, we shall consider the converse problem, proving that the condition is not necessary.

1. Introduction

Given a hyperbolic Riemann surface R covered by the unit disk Δ, we denote by $M(R)$ the unit ball of the space $L^\infty(R)$ of all essentially bounded Beltrami differentials on R. We also denote by $SQ(R)$ the unit sphere of the space $Q(R)$ of all integrable holomorphic quadratic differentials on R. Let $\Phi: M(R) \to T(R)$ denote the canonical projection from $M(R)$ to the Teichmüller space $T(R)$ of R.

We first recall the following

Theorem 1. Suppose $\mu \in M(R)$ is extremal and (ϕ_n) is a sequence in $SQ(R)$. If $\Phi(k_n|\phi_n)/\phi_n$ converges in the Teichmüller metric to $\Phi(\mu)$ for some sequence (k_n), then (ϕ_n) is a Hamilton sequence for μ.

Theorem 1 was proved by F. P. Gardiner [1] (see also [5]). In this note, we shall consider the converse problem, proving that the converse of Theorem 1 is not true. In fact, we can prove the following stronger result.

Theorem 2. Let R be of conformal infinite type. Any non-zero extremal Beltrami coefficient $\mu \in M(R)$ possesses a Hamilton sequence (ϕ_n) such that, for any sequence (k_n) in $(0, 1)$, $\Phi(k_n|\phi_n)/\phi_n$ does not converge to $\Phi(\mu)$ in the Teichmüller metric.

2. Preliminaries

In this section, we will recall some basic definitions and notations from Teichmüller theory. For more details see the book [2].

For a given $\mu \in M(R)$, denote by f^μ the quasiconformal mapping with domain R and Beltrami coefficient μ, which is uniquely determined up to a conformal mapping on $f^\mu(R)$. Two elements μ and ν in $M(R)$ are equivalent, which is denoted by $\mu \sim \nu$, if f^μ and f^ν are Teichmüller equivalent, meaning as usual that there...

Received by the editors November 11, 1998 and, in revised form, March 8, 1999.
2000 Mathematics Subject Classification. Primary 32G15, 30F60, 30C62, 30C70.
Key words and phrases. Hamilton sequence, extremal Beltrami coefficient, Teichmüller metric.
Project supported by the National Natural Science Foundation of China.

105

©2000 American Mathematical Society
exists a conformal mapping g from $f^\mu(R)$ onto $f^\nu(R)$ such that f^ν and $g \circ f^\mu$ are homotopic (mod ∂R). Then $T(R) = M(R)/\sim$ is the Teichmüller space of R. Recall that $\Phi : M(R) \to T(R)$ denotes the canonical projection.

For any Beltrami coefficient $\mu \in M(R)$, define

$$k_0(\mu) = \inf\{\|\nu\|_\infty : \nu \sim \mu\},$$

and set

$$K_0(\mu) = \frac{1 + k_0(\mu)}{1 - k_0(\mu)}.$$

Similarly, we define

$$h(\mu) = \inf\{\|\nu|R - E\|_\infty : \nu \sim \mu, E \subset R \text{ compact}\},$$

and let

$$H(\mu) = \frac{1 + h(\mu)}{1 - h(\mu)}.$$

Now the Teichmüller distance between points $\Phi(\mu_1)$ and $\Phi(\mu_2)$ is defined as

$$d(\Phi(\mu_1), \Phi(\mu_2)) = \frac{1}{2} \log K_0(\mu),$$

where μ is the Beltrami coefficient of the mapping $f^\mu \circ (f^\nu)^{-1}$.

We say that $\mu \in M(R)$ is extremal if $\|\mu\|_\infty = k_0(\mu)$. It is well known (see [3], [4], [6] or Chapter 6 in [2]) that μ is extremal iff μ satisfies the Hamilton-Krushkal condition, that is, there exists a sequence (ϕ_n) in $SQ(R)$ such that

$$\lim_{n \to \infty} \Re \int_R \mu \phi_n = \|\mu\|_\infty.$$

Such a sequence (ϕ_n) is called a Hamilton sequence for μ. It is called degenerate if $\phi_n \to 0$ locally uniformly in \bar{R}.

We also need two fundamental Reich-Strebel inequalities (see [6] or Chapter 6 in [2]). They are

1. \[\frac{1}{K_0(\mu)} \leq \int_R |\phi| \frac{|1 - \mu \frac{\phi}{|\phi|}|^2}{1 - |\mu|^2} \quad \text{for all } \phi \in SQ(R) \]

and

2. \[K_0(\mu) \leq \int_R |\phi_0| \frac{|1 + \mu \frac{\phi_0}{|\phi_0|}|^2}{1 - |\mu|^2}, \]

where $\phi_0 \in SQ(R)$ satisfies $k_0(\mu)|\phi_0|/\phi_0 \sim \mu$.

3. **Proof of Theorem 2**

Let μ be an extremal Beltrami coefficient with $k = \|\mu\|_\infty > 0$. If $\Phi(\mu)$ is a Strebel point (for the definition of Strebel point, see, for example, [2]), then there exists some ϕ in $SQ(R)$ such that $\mu = k|\phi|/\phi$. By the density of non-Strebel differentials (see [5]), there exists a sequence (ϕ_n) in $SQ(R)$ such that $\|\phi_n - \phi\| \to 0$ as $n \to \infty$, but each point $\Phi(k_n|\phi_n|/\phi_n)$ is not a Strebel point for $k_n \in (0, 1)$. Since $\lim_{n \to \infty} \|\phi_n - \phi\| = 0$, it is obvious that (ϕ_n) is a Hamilton sequence for μ. On the other hand, since $\Phi(\mu)$ is a Strebel point, by the openness of Strebel points, $\Phi(k_n|\phi_n|/\phi_n)$ cannot converge in the Teichmüller metric to $\Phi(\mu)$ for any sequence (k_n) in $(0, 1)$.
Now let \(\mu \) be an extremal Beltrami coefficient with \(k = \| \mu \|_{\infty} > 0 \) such that \(\Phi(\mu) \) is not a Strebel point, that is, \(\mu \) possesses a degenerate Hamilton sequence. Let \((\phi_n) \) in \(SQ(R) \) be such a sequence; then

\[
(3) \quad \lim_{n \to \infty} \Re \iint_{R} \mu \phi_n = k.
\]

Choose a sequence \(\{E_n\} \) of compact subsets of \(R \) such that

\[
(4) \quad \iint_{E_n} |\phi_n| = 1 + o(1) \quad \text{as} \quad n \to \infty.
\]

Define \(\mu_n = \mu \chi_{E_n} \), where \(\chi \) denotes the characteristic function of a set.

By the fundamental inequality (1), noting (3) and (4), we get, as \(n \to \infty \), that

\[
\frac{1}{K_0(\mu_n)} \leq \iint_{R} \frac{|1 - \mu_n \bar{\phi_n}|^2}{|1 - |\mu_n|^2|} \phi_n \\overline{\phi_n} + \iint_{R - E_n} |\phi_n| = \iint_{E_n} \frac{|1 - \mu \bar{\phi_n}|^2}{|1 - |\mu|^2|} \phi_n \\overline{\phi_n} + \iint_{R - E_n} |\phi_n| = \iint_{R} \frac{|1 - \mu \bar{\phi_n}|^2}{|1 - |\mu|^2|} \phi_n \\overline{\phi_n} + o(1)
\]

\[
= \iint_{E_n} \frac{|1 - \mu \bar{\phi_n}|^2}{|1 - |\mu|^2|} \phi_n \\overline{\phi_n} + o(1)
\]

\[
= \iint_{E_n} \frac{|1 - \mu \bar{\phi_n}|^2}{|1 - |\mu|^2|} \phi_n \\overline{\phi_n} + o(1)
\]

which implies

\[
(5) \quad K_0(\mu_n) = \frac{1 + k}{1 - k} + o(1) \quad \text{as} \quad n \to \infty.
\]

Noting that the boundary dilatation \(H(\mu_n) = 1 \), we conclude by Strebel’s Frame Mapping Criterion (see Chapter 6 in [2]) that \(\Phi(\mu_n) \) is a Strebel point when \(n \) is sufficiently large, so there is a \(\psi_n \) in \(SQ(R) \) such that \(\mu_n \approx k_0(\mu_n) ||\psi_n||/\psi_n \). By the fundamental inequality (2), we get

\[
K_0(\mu_n) \leq \iint_{R} |\psi_n| \frac{|1 + \mu_n \bar{\psi_n}|^2}{|1 - |\mu_n|^2|} \frac{\psi_n}{|\psi_n|} \\overline{\psi_n} + \iint_{R - E_n} |\psi_n| \\overline{\psi_n}
\]

\[
= \iint_{E_n} |\psi_n| \frac{|1 + \mu \bar{\psi_n}|^2}{|1 - |\mu|^2|} \phi_n \\overline{\phi_n} + \iint_{R - E_n} |\psi_n| \\overline{\psi_n}
\]

\[
\leq \frac{1 + k}{1 - k} \iint_{E_n} |\psi_n| \\overline{\psi_n} + \iint_{R - E_n} |\psi_n| \\overline{\psi_n},
\]

from which along with (5) it follows that

\[
(7) \quad \iint_{E_n} |\psi_n| = 1 + o(1) \quad \text{as} \quad n \to \infty.
\]
Consequently, by (6), (7) we have, as \(n \to \infty \), that

\[
K_0(\mu_n) \leq \iint_{E_n} |\psi_n| \left| \frac{1 + \mu \frac{\psi_n}{|\psi_n|}}{1 - |\mu|^2} \right|^2 + o(1)
\]

\[
\leq \iint_{E_n} |\psi_n| \left| \frac{1 + \mu \frac{\psi_n}{|\psi_n|}}{1 - |\mu|^2} \right|^2 + \int_{R - E_n} |\psi_n| \left| \frac{1 + \mu \frac{\psi_n}{|\psi_n|}}{1 - |\mu|^2} \right|^2 + o(1)
\]

\[
= \iint_{R} |\psi_n| \left| \frac{1 + \mu \frac{\psi_n}{|\psi_n|}}{1 - |\mu|^2} \right|^2 + o(1),
\]

which, by (5), forces that

\[
\lim_{n \to \infty} \Re \iint_R \mu \psi_n = k,
\]

that is, \((\psi_n)\) is a Hamilton sequence for \(\mu \).

Now we prove that, for any sequence \((k_n)\) in \((0, 1)\), \(\Phi(k_n|\psi_n|/\psi_n) \) does not converge to \(\Phi(\mu) \) in the Teichmüller metric.

In fact, by definition, the Beltrami coefficient \(\nu_n \) of the mapping \(f^{\mu_n} \circ (f^{\mu})^{-1} \) is \(\nu \chi^{f^{\mu}(R - E_n)} \), where \(\nu \) is the Beltrami coefficient of the inverse mapping \((f^{\mu})^{-1} \), that is

\[
\nu = -\frac{\partial f^{\mu}}{\partial f^{\mu}} \circ (f^{\mu})^{-1}.
\]

Since \(\mu \) is extremal which possesses a degenerate Hamilton sequence, so does \(\nu \).

Noting that \(f^{\mu}(E_n) \) is compact in \(f^{\mu}(R) \), we conclude that \(\nu_n = \nu \chi^{f^{\mu}(R - E_n)} \) is also extremal. Consequently,

\[
d(\Phi(\mu_n), \Phi(\mu)) = \frac{1}{2} \log K_0(\nu_n) = \frac{1}{2} \log \frac{1 + k}{1 - k}.
\]

So \(\Phi(k_0(\mu_n)|\psi_n|/\psi_n) = \Phi(\mu_n) \) does not converge to \(\Phi(\mu) \) in the Teichmüller metric.

Noting that \(k_0(\mu_n) = k + o(1) \) as \(n \to \infty \), we conclude that, for any \((k_n)\) with \(k_n \in (0, 1) \), \(\Phi(k_n|\psi_n|/\psi_n) \) does not converge to \(\Phi(\mu) \) in the Teichmüller metric.

Now the proof of Theorem 2 is complete.

4

Theorem 2 says that the converse of Theorem 1 is not true. On the other hand, by the density of Strebel points (see [4]), for any point \(\tau \) in the Teichmüller space \(T(R) \), there exist a sequence \((k_n)\) in \((0, 1)\) and a sequence \((\phi_n)\) in \(SQ(R) \) such that \(\Phi(k_n|\phi_n|/\phi_n) \) converges in the Teichmüller metric to \(\tau \). Now Theorem 1 implies that \((\phi_n)\) is a Hamilton sequence for any extremal Beltrami coefficient \(\mu \) in the class \(\tau \). We state this as

Proposition 3. Any point \(\tau \) in the Teichmüller space \(T(R) \) possesses a sequence \((\phi_n)\) in \(SQ(R) \) such that \((\phi_n)\) is a Hamilton sequence for any extremal Beltrami coefficient \(\mu \) in the class \(\tau \) and \(\Phi(k_n|\phi_n|/\phi_n) \) converges in the Teichmüller metric to \(\Phi(\mu) \) for some sequence \((k_n)\) in \((0, 1)\).

Acknowledgement

The author would like to thank the referee for valuable suggestions.
REFERENCES

Department of Mathematics, Suzhou University, Suzhou 215006, People’s Republic of China

E-mail address: ylshen@suda.edu.cn

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use