Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Polynomial solutions to Dirichlet problems


Authors: Marc Chamberland and David Siegel
Journal: Proc. Amer. Math. Soc. 129 (2001), 211-217
MSC (2000): Primary 31A25
DOI: https://doi.org/10.1090/S0002-9939-00-05512-X
Published electronically: July 27, 2000
MathSciNet review: 1694451
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Dirichlet problem

\begin{eqnarraystar}\Delta u(x,y) & = & 0~~~\mbox{in}~ \mathbb{R}^2, u(x,y) & = & f(x,y)~~~\mbox{on}~\psi (x,y) = 0 \end{eqnarraystar}



is considered where the functions $f$ and $\psi$ are polynomials. The authors study the problem of determining which functions $\psi$ will admit polynomial solutions $u$ for any polynomial $f$. When one additionally requires the classical condition $\operatorname{deg} u \leq \operatorname{deg} f$, this forces $\operatorname{deg} \psi \leq 2$, and a complete classification is obtained. Some necessary conditions are obtained for the case $\operatorname{deg} \psi >2$.


References [Enhancements On Off] (What's this?)

  • 1. S. Axler, P. Bourdon, and W. Ramey.
    Harmonic Function Theory.
    Springer-Verlag, New York, 1992. MR 93f:31001
  • 2. S. Axler and W. Ramey.
    Harmonic polynomials and Dirichlet-type problems.
    Proceedings of the Amer. Math. Soc., 123(12):3765-3773, 1995. MR 96b:31003
  • 3. P. Ebenfelt.
    Singularities encountered by the analytic continuation of solutions to Dirichlet's problem.
    Complex Variables Theory Appl., 20:75-91, 1992. MR 95f:30059
  • 4. P. Ebenfelt and H. S. Shapiro.
    The Mixed Cauchy Problem for Holomorphic Partial Differential Equations.
    J. D'Analyse Math., 65:237-295, 1995. MR 96f:35009
  • 5. L. Flatto and D. Newman and H. S. Shapiro.
    The Level Curves of Harmonic Functions.
    Transactions of the Amer. Math. Soc., 123:425-436, 1966. MR 33:5918
  • 6. L. Hansen and H. S. Shapiro.
    Graphs and Functional Equations.
    Ann. Acad. Sci. Fennicae, 18:125-146, 1993. MR 94b:30030
  • 7. L. Hansen and H. S. Shapiro.
    Functional Equations and Harmonic Extensions.
    Complex Variables, 24:121-129, 1994. MR 95f:30003
  • 8. H. S. Shapiro.
    An algebraic theorem of E. Fisher, and the holomorphic Goursat problem.
    Bull. London Math. Soc., 21:513-537, 1989. MR 90m:35008
  • 9. D. Khavinson and H. S. Shapiro.
    Dirichlet's problem when the data is an entire function.
    Bull. London Math. Soc., 24:456-468, 1992. MR 94d:35005
  • 10. M. H. Protter and H. F. Weinberger
    Maximum Principles in Differential Equations.
    Springer-Verlag, 1984. MR 86f:35034
  • 11. I. G. Shafarevich.
    Basic Algebraic Geometry 1, Second Edition.
    Springer-Verlag, New York, 1994. MR 95m:14001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 31A25

Retrieve articles in all journals with MSC (2000): 31A25


Additional Information

Marc Chamberland
Affiliation: Department of Mathematics and Computer Science, Grinnell College, Grinnell, Iowa 50112-0806
Email: chamberl@math.grin.edu

David Siegel
Affiliation: Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email: dsiegel@math.uwaterloo.ca

DOI: https://doi.org/10.1090/S0002-9939-00-05512-X
Received by editor(s): February 20, 1998
Received by editor(s) in revised form: April 5, 1999
Published electronically: July 27, 2000
Communicated by: Albert Baernstein II
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society