MOD 2 REPRESENTATIONS OF ELLIPTIC CURVES

K. RUBIN AND A. SILVERBERG

(Communicated by David E. Rohrlich)

Abstract. Explicit equations are given for the elliptic curves (in characteristic \(\neq 2, 3 \)) with mod 2 representation isomorphic to that of a given one.

1. Introduction

If \(N \) is a positive integer and \(E \) is an elliptic curve defined over a field \(F \), one can ask for a description of the set of elliptic curves whose mod \(N \) representation (of the absolute Galois group) is symplectically isomorphic to that of \(E \) (see [2]). For \(N = 3, 4, \) and \(5 \), we gave explicit equations in [3] and [5]. The case \(N = 1 \) is trivial, and when \(N \geq 7 \) the set in question is always finite and the situation is quite different from the ones we consider. In [4] we gave a description for \(N = 6 \) (but did not give explicit equations).

This note, which can be viewed as a footnote to those papers, deals with the easier case \(N = 2 \). Note that since there is only one nondegenerate alternating pairing on \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \), isomorphic and symplectically isomorphic are the same for mod 2 representations. Theorem 1 gives explicit equations for the family of elliptic curves whose mod 2 representation is isomorphic to that of a given one. Given two elliptic curves, Corollary 2 gives an easy way to determine whether or not their mod 2 representations are isomorphic. The proofs are given in \(\S 2 \). In \(\S 3 \) we give a different approach, using the algorithm from [3].

If \(F \) is a field, let \(F^{\text{sep}} \) denote a separable closure of \(F \) and let \(G_F = \text{Gal}(F^{\text{sep}}/F) \). If \(E \) is an elliptic curve over \(F \), let \(j(E) \) denote its \(j \)-invariant, let \(\Delta(E) \) denote its discriminant, and let \(E[2] \) denote the \(G_F \)-module of 2-torsion points on \(E \).

Theorem 1. Suppose \(F \) is a field of characteristic different from 2 and 3, and \(E : y^2 = x^3 + ax + b \) is an elliptic curve over \(F \). If \(u, v \in F \), let \(E_{u,v} \) denote the curve

\[
y^2 = x^3 + 3(3av^2 + 9bu - a^2u^2)x + 27bv^3 - 18a^2uv^2 - 27abu^2v - (2a^3 + 27b^2)u^3.
\]

If \(E' \) is an elliptic curve over \(F \), let \(j(E) \) denote its \(j \)-invariant, let \(\Delta(E) \) denote its discriminant, and let \(E[2] \) denote the \(G_F \)-module of 2-torsion points on \(E \).

If \(E' \) is an elliptic curve over \(F \), and \(E'[2] \cong E[2] \) as \(G_F \)-modules, then \(E' \) is isomorphic to \(E_{u,v} \) for some \(u, v \in F \). Conversely, if \(u, v \in F \) and \(E_{u,v} \) is nonsingular, then \(E_{u,v}[2] \cong E[2] \) as \(G_F \)-modules,

\[
j(E_{u,v}) = \frac{(3av^2 + 9bu - a^2u^2)^3 j(E)}{27a^3(v^3 + au^2v + bu^3)^2}.
\]
and

\[\Delta(E_{u,v}) = 3^6(v^3 + au^2v + bu^3)^2\Delta(E). \]

Corollary 2. Suppose \(F \) is a field of characteristic different from 2 and 3, and \(E : y^2 = x^3 + ax + b \) is an elliptic curve over \(F \). Let

\[C(u,v) = \frac{(3av^2 + 9buv - a^2u^2)^3}{27a^3(v^3 + au^2v + bu^3)^2}. \]

Suppose \(E' \) is an elliptic curve over \(F \). If \(j(E') \neq 0, 1728 \), and for some \((u,v) \in \mathbb{P}^1(F) \) we have

(i) \(\frac{j(E')}{j(E)} = C(u,v) \) if \(a \neq 0 \), or

(ii) \(\frac{j(E')}{j(E) - 1728} = \frac{-4C(u,v)a^3}{27b^2} \) if \(b \neq 0 \),

then \(E'[2] \cong E[2] \). Conversely, if \(E'[2] \cong E[2] \), then there is a point \((u,v) \in \mathbb{P}^1(F) \) such that \(j(E') \) satisfies (i) if \(a \neq 0 \) and (ii) if \(b \neq 0 \).

We thank the NSF and NSA for financial support. Silverberg thanks AIM and the UC Berkeley math department for their hospitality.

2. Proofs

Lemma 3. Suppose \(F \) is a field and \(\varphi(x) \in F[x] \) is a polynomial with no multiple roots. Let \(\Psi_\varphi \) denote the set of roots of \(\varphi \).

(i) There is a \(GF\)-equivariant bijection \(\Psi_\varphi \cong \text{Hom}_{GF\text{-algebra}}(F[x]/(\varphi(x)), F^{sep}) \).

(ii) The \(F\)-algebra of \(GF\)-equivariant maps from \(\Psi_\varphi \) to \(F^{sep} \) is isomorphic to \(F[x]/(\varphi(x)) \).

Proof. Assertion (i) is clear, and (ii) follows from Lemma 5 on p. A.V.75 of [1].

Lemma 4. Suppose \(E : y^2 = f(x) \) and \(E' : y^2 = g(x) \) are elliptic curves over a field \(F \) with \(f(x), g(x) \in F[x] \) of degree 3. Then \(E[2] \cong E'[2] \) as \(GF\)-modules if and only if \(F[x]/(f(x)) \cong F[x]/(g(x)) \) as \(F\)-algebras.

Proof. We apply Lemma 3 with \(\varphi = f \) and \(g \). Since the roots of \(f \) are the \(x\)-coordinates of the elements of \(E[2] \), there is a \(GF\)-equivariant bijection \(\Psi_f \cong E[2] - 0 \). Similarly we have \(\Psi_g \cong E'[2] - 0 \). Thus by Lemma 3, \(F[x]/(f(x)) \cong F[x]/(g(x)) \) as \(F\)-algebras if and only if \(E[2] - 0 \cong E'[2] - 0 \) as \(GF\)-sets. Since every bijection \(E[2] - 0 \cong E'[2] - 0 \) extends to a group isomorphism \(E[2] \cong E'[2] \), the lemma follows.

Proof of Theorem 4 Write \(f(x) = x^3 + ax + b \), so \(E \) is the elliptic curve \(y^2 = f(x) \), and let \(E' \) be an elliptic curve \(y^2 = g(x) = x^3 + ax + \beta \) with \(\alpha, \beta \in F \).

Suppose \(E[2] \cong E'[2] \) as \(GF\)-modules. By Lemma 4 there is an isomorphism of \(F\)-algebras \(\phi : F[z]/(g(z)) \cong F[x]/(f(x)) \). Write \(\phi(z) = 3ax^2 + 3vx + w \) with \(u, v, w \in F \). (The extra factors of 3 remove denominators which would otherwise occur in the equation for \(\xi_{u,v} \) and the formulas below.) The matrix for \(x \) acting by multiplication on \(F[x]/(f(x)) \), with respect to the \(F\)-basis \(\{1, x, x^2\} \), is \(\begin{pmatrix} 1 & 0 & -b \\ 0 & 1 & 0 \end{pmatrix} \).
Therefore the matrix for the action of $\phi(z)$ on $F[x]/(f(x))$ is
\[
\begin{pmatrix}
 w & -3bw & -3bv \\
 3v & w - 3au & -3bu - 3av \\
 3u & 3v & w - 3au
\end{pmatrix},
\]
which has trace $3w - 6au$. However, the trace of z acting by multiplication on $F[z]/(g(z))$ is zero. Since ϕ is an isomorphism, we must have $w = 2au$. It follows that the characteristic polynomial of $\phi(z)$ acting on $F[x]/(f(x))$ is
\[
h(T) = T^3 + 3(3av^2 + 9bv - a^2u^2)T + 27bu^3 - 18a^2uv^2 - 27abu^2v - (2a^3 + 27b^2)a^3.
\]
Again, since ϕ is an isomorphism, we conclude that $h(T) = g(T)$, i.e., E' is $E_{u,v}$ as desired.

Conversely, suppose that $u, v \in F$ are such that
\[
\alpha = 3(3av^2 + 9bv - a^2u^2), \quad \beta = 27bu^3 - 18a^2uv^2 - 27abu^2v - (2a^3 + 27b^2)a^3.
\]
Then working backwards through the argument above, one can show that the map $z \mapsto 3ax^2 + 3v + 2au$ induces a homomorphism $\phi : F[z]/(g(z)) \to F[x]/(f(x))$. The determinant of ϕ with respect to the bases $\{1, z, z^2\}$ and $\{1, x, x^2\}$ is $27(v^3 + au^2v + bu^3)$. However, the discriminant of g is
\[
3^6(4a^3 + 27b^2)(v^3 + au^2v + bu^3)^2.
\]
Since E' is an elliptic curve, the discriminant of g must be nonzero, and hence the determinant of ϕ is nonzero so ϕ is an isomorphism. By Lemma 4 it follows that $E[2] \cong E'[2]$ as GF-modules.

The formulas for the j-invariant and the discriminant are immediate.

Proof of Corollary 2 If $u, v \in F$ are such that $j(E')$ satisfies (i) or (ii), then $E_{u,v}$ is nonsingular (by the computation of its discriminant in Theorem 1) and $j(E') = j(E_{u,v})$. If $j(E') \neq 0, 1728$, then E' is a quadratic twist of $E_{u,v}$. Therefore using Theorem 1 we have $E'[2] \cong E_{u,v}[2] \cong E[2]$. Conversely, if $E'[2] \cong E[2]$, then by Theorem 1 we can find $u, v \in F$ such that $E' \cong E_{u,v}$. By Theorem 1 we have (i) and (ii).

3. A different method

Applying the method of [3] (see also §3 of [5]) to the case $N = 2$, one again obtains explicit equations for the family of elliptic curves with mod 2 representation isomorphic to that of E. We show below how the algorithm works in this case. Suppose F is a field with $\text{char}(F) \neq 2, 3$, and $E : y^2 = x^3 + ax + b$ is an elliptic curve over F. Note that mod 2 representations do not change under quadratic twist. Every elliptic curve E' over F such that the GF-action on $E'[2]$ is trivial is a quadratic twist of
\[
A_\lambda : y^2 = x(x - 1)(x - \lambda)
\]
with $\lambda \in F \setminus \{0, 1\}$. Putting A_λ in Weierstrass form we obtain
\[
E_\lambda : y^2 = x^3 + a_4(\lambda)x + a_6(\lambda),
\]
where
\[
a_4(\lambda) = -\frac{1}{3}(\lambda^2 - \lambda + 1), \quad a_6(\lambda) = -\frac{1}{27}(2\lambda^3 - 3\lambda^2 - 3\lambda + 2).
\]
The algorithm in §3 of [3] shows that the equations we are looking for are of the form

\[(1)\]
\[dy^2 = x^3 + a(t)x + b(t)\]

with

\[d \in F, \quad a(t) = \mu^{-2}(\gamma t + 1)^2 a_4(A(t)), \quad \text{and} \quad b(t) = \mu^{-3}(\gamma t + 1)^3 a_6(A(t)),\]

where \(u_0\) satisfies \(j(E_{u_0}) = j(E)\), \(\mu\) satisfies

\[a_4(u_0) = a\mu^2 \quad \text{and} \quad a_6(u_0) = b\mu^3,\]

and

\[A(t) = \frac{\alpha t + u_0}{\gamma t + 1}\]

with \(\alpha\) and \(\gamma\) chosen so that \(a(t), b(t) \in F[t]\).

If \(ab \neq 0\), let \(j = j(E)\) and let \(u_0\) be a root of the numerator (as a polynomial in \(\lambda\)) of

\[j(E_\lambda) - j = \frac{256 - 768\lambda + (1536 - j)\lambda^2 + (2j - 1792)\lambda^3 + (1536 - j)\lambda^4 - 768\lambda^5 + 256\lambda^6}{\lambda^2(\lambda - 1)^2}.\]

Let

\[\mu = \frac{a_6(u_0)a}{a_4(u_0)b} = \frac{(2u_0^3 - 3u_0^2 - 3u_0 + 2)a}{9(u_0^2 - u_0 + 1)b} \in (F_{\text{sep}})\times,\]

\[\alpha = \frac{3(u_0 - 2)\mu^3b}{u_0(u_0 - 1)}, \quad \gamma = \frac{3(2u_0 - 1)\mu^3b}{u_0(u_0 - 1)} \in F_{\text{sep}}.\]

With these values, equation (1) becomes

\[dy^2 = x^3 + a(1 + (J - 1)t^2)x + b(1 + 3t - 3(J - 1)t^2 - (J - 1)t^3),\]

where

\[J = \frac{j(E)}{1728} = \frac{4a^3}{4a^3 + 27b^2}.\]

For \(d \in F\) and \(t \in \mathbb{P}^1(F)\), this gives the elliptic curves over \(F\) with mod 2 representation isomorphic to that of \(E\), when \(ab \neq 0\).

Similarly, if \(b = 0\), then

\[j(E_\lambda) - j(E) = \frac{64(-2 + \lambda)^2(1 + \lambda)^2(-1 + 2\lambda)^2}{(-1 + \lambda)^2 \lambda^2}.\]

With \(u_0 = 2, \mu = 1/\sqrt{-a}, \alpha = 0, \text{and} \gamma = 3\sqrt{-a}\), equation (1) becomes

\[dy^2 = x^3 + a(1 - 3at^2)x + 2a^2t(1 + at^2).\]

If \(a = 0\), then

\[u_0 = \frac{1 + \sqrt{-3}}{2}, \quad \mu = \frac{-1}{b^{1/3}\sqrt{-3}}, \quad \alpha = \frac{b^{1/3}(1 - \sqrt{-3})}{2}, \quad \text{and} \quad \gamma = b^{1/3}\]

yield the equation

\[dy^2 = x^3 + 3bt^2x + b(1 - bt^3).\]
REFERENCES

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305-2125 – DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, 231 W. 18 AVENUE, COLUMBUS, OHIO 43210-1174
E-mail address: rubin@math.stanford.edu

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, 231 W. 18 AVENUE, COLUMBUS, OHIO 43210-1174
E-mail address: silver@math.ohio-state.edu