Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A matrix-valued Choquet-Deny theorem


Authors: Cho-Ho Chu, Titus Hilberdink and John Howroyd
Journal: Proc. Amer. Math. Soc. 129 (2001), 229-235
MSC (1991): Primary 46G10, 45E10, 43A05, 43A25, 31C05
DOI: https://doi.org/10.1090/S0002-9939-00-05694-X
Published electronically: March 29, 2000
MathSciNet review: 1784024
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

Let $\sigma$ be a positive matrix-valued measure on a locally compact abelian group $G$ such that $\sigma(G)$ is the identity matrix. We give a necessary and sufficient condition on $\sigma$ for the absence of a bounded non-constant matrix-valued function $f$ on $G$ satisfying the convolution equation $ f *\sigma = f$. This extends Choquet and Deny's theorem for real-valued functions on $G$.


References [Enhancements On Off] (What's this?)

  • 1. R.G. Bartle, A general bilinear vector integral, Studia Math. 15 (1956) 337-352. MR 18:289a
  • 2. G. Choquet and J. Deny, Sur l'équation de convolution $\mu * \sigma = \mu$, C.R. Acad. Sci. Paris, Sér. I Math. 250 (1960) 779-801. MR 22:9808
  • 3. C-H. Chu and K-S. Lau, Solutions of the operator-valued integrated Cauchy functional equation, J. Operator Theory 32 (1994) 157-183. MR 96d:43001
  • 4. C-H. Chu and T. Hilberdink, The convolution equation of Choquet and Deny on nilpotent groups, Integral Equation & Operator Theory 26 (1996) 1-13. MR 98c:43002
  • 5. C-H. Chu and C-W. Leung, Harmonic functions on homogeneous spaces, Monatshefte Math. 128 (1999) 227-235. CMP 2000:04
  • 6. J. Diestel and J.J. Uhl, Vector measures, Mathematical Surveys 15, Amer. Math. Soc. 1977. MR 56:12216
  • 7. E.B. Dynkin and M.B. Malyutov, Random walks on groups with a finite number of generators, Soviet Math. Doklady 137 (1961) 1042-1045. MR 24:A1751
  • 8. Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Sco. Math. France 101 (1973) 333-379. MR 51:5841
  • 9. E. Hewitt and K.A. Ross, Abstract harmonic analysis, Vol.II, Springer-Verlag (1979) Berlin. MR 81k:43001
  • 10. V.A. Kaimanovich and A.M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. of Prob. 11 (1983) 457-490. MR 85d:60024
  • 11. K-S. Lau, J. Wang and C-H. Chu, Vector-valued Choquet-Deny theorem, renewal equation and self-similar measures, Studia Math. 117 (1995) 1-28. MR 97m:43001
  • 12. T. Ramsey and Y. Weit, Ergodic and mixing properties of measures on locally compact abelian groups, Proc. Amer. Soc. 92 (1984) 519-520. MR 86b:43014
  • 13. W. Rudin, Real and complex analysis, McGraw-Hill (1966) New York. MR 35:1420

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46G10, 45E10, 43A05, 43A25, 31C05

Retrieve articles in all journals with MSC (1991): 46G10, 45E10, 43A05, 43A25, 31C05


Additional Information

Cho-Ho Chu
Affiliation: Goldsmiths College, University of London, London SE14 6NW, England
Email: maa01chc@gold.ac.uk

Titus Hilberdink
Affiliation: Goldsmiths College, University of London, London SE14 6NW, England
Email: map01twh@gold.ac.uk

John Howroyd
Affiliation: Goldsmiths College, University of London, London SE14 6NW, England
Email: mas01jdh@gold.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-00-05694-X
Received by editor(s): April 6, 1999
Published electronically: March 29, 2000
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society