Finite rank Butler groups and torsion-free modules over a discrete valuation ring

Authors:
D. M. Arnold, M. Dugas and K. M. Rangaswamy

Journal:
Proc. Amer. Math. Soc. **129** (2001), 325-335

MSC (1991):
Primary 20K15, 20K26

DOI:
https://doi.org/10.1090/S0002-9939-00-05547-7

Published electronically:
August 29, 2000

MathSciNet review:
1707503

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Fully faithful functors from isomorphism at categories of finite rank Butler groups to torsion-free modules of finite rank over the integers localized at a prime are constructed via categories of representations of antichains over discrete valuation rings. Descriptions and properties of modules in the images of these functors are given, including a characterization of finite representation type and a complete list of indecomposables in that case.

**[1]**D. Arnold,*A duality for torsion-free modules of finite rank over a discrete valuation ring*, Proc. London Math. Soc. (3)**24**(1972), 204-216. MR**45:1895****[2]**-,*Finite Rank Torsion-free Abelian Groups and Rings*, Lecture Notes in Math. 931, Springer-Verlag, New York, 1982. MR**84d:20002****[3]**D. Arnold and M. Dugas,*Representation type of posets and finite rank Butler groups*, Colloq. Math.**74**(1997), 299-320. MR**98m:16016****[4]**D. Arnold and C. Vinsonhaler,*Finite rank Butler groups: a survey of recent results*, Abelian Groups, Lecture Notes in Pure and Applied Math., Marcel Dekker, New York, 1993, 17-41. MR**94c:20089****[5]**M. C. R. Butler,*A class of torsion-free abelian groups of finite rank*, Proc. London Math. Soc. (3)**15**(1965), 680-698. MR**36:1532****[6]**L. Fuchs,*Infinite abelian groups*, Vol. II, Academic Press, New York, 1973. MR**50:2362****[7]**L. Fuchs and L. Salce,*Modules over valuation domains*, Lecture Notes in Pure and Applied Math. 97, Marcel Dekker, New York, 1985. MR**86h:13008****[8]**L. Lady,*Nearly isomorphic torsion-free abelian groups*, J. Algebra**35**(1975), 235-238.**[9]**-,*Splitting fields for torsion-free modules over discrete valuation rings*, I, J. Alg.**49**(1977), 261-275. MR**58:22039****[10]**-,*Extension of scalars for torsion-free modules over Dedekind domains*, Symposia Math., Vol. 23, Academic Press, London/New York, 1979, 287-305. MR**82i:13011****[11]**-,*Splitting fields for torsion-free modules over discrete valuation rings*, II, J. Alg.**66**(1980), 281-306. MR**83g:16056****[12]**-,*Splitting fields for torsion-free modules over discrete valuation rings*, III,**66**(1980), 307-320. MR**83g:16056****[13]**-,*A seminar on splitting rings for torsion-free modules over Dedekind domains*, Abelian Groups, Lecture Notes in Math. 1006, Springer-Verlag, New York, 1983, 1-48. MR**85f:13007****[14]**F. Richman,*A class of rank- torsion-free groups*, Studies on Abelian Groups, Paris, 1968, 327-333. MR**39:5695****[15]**-,*Isomorphism of Butler groups at a prime*, Contemporary Mathematics, American Mathematical Society, vol. 171, 1994, 333-357. MR**95h:20068**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
20K15,
20K26

Retrieve articles in all journals with MSC (1991): 20K15, 20K26

Additional Information

**D. M. Arnold**

Affiliation:
Department of Mathematics, Baylor University, Waco, Texas 76798-7328

Email:
David_Arnold@baylor.edu

**M. Dugas**

Affiliation:
Department of Mathematics, Baylor University, Waco, Texas 76798-7328

Email:
dugasm@baylor.edu

**K. M. Rangaswamy**

Affiliation:
Department of Mathematics, University of Colorado, Colorado Springs, Colorado 80933-7150

Email:
ranga@math.uccs.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05547-7

Received by editor(s):
April 15, 1999

Published electronically:
August 29, 2000

Additional Notes:
The first and second authors’ research was supported, in part, by the Baylor University Summer Sabbatical Program

The third author’s research was done when this author visited Baylor University. He gratefully acknowledges the hospitality of the Mathematics Department and its faculty

Communicated by:
Lance W. Small

Article copyright:
© Copyright 2000
American Mathematical Society