The Bernstein problem for complete Lagrangian stationary surfaces
Author:
Chikako Mese
Journal:
Proc. Amer. Math. Soc. 129 (2001), 573580
MSC (1991):
Primary 58E12; Secondary 53C15
Published electronically:
July 27, 2000
MathSciNet review:
1707155
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, we investigate the global geometric behavior of lagrangian stationary surfaces which are lagrangian surfaces whose area is critical with respect to lagrangian variations. We find that if a complete oriented immersed lagrangian surface has quadratic area growth, one end and finite topological type, then it is minimal and hence holomorphic. The key to the proof is the mean curvature estimate of Schoen and Wolfson combined with the observation that a complete immersed surface of quadratic area growth, finite topology and mean curvature has finite total absolute curvature.
 [BdC]
J.
L. Barbosa and M.
do Carmo, On the size of a stable minimal surface in
𝑅³, Amer. J. Math. 98 (1976),
no. 2, 515–528. MR 0413172
(54 #1292)
 [B]
Robert
L. Bryant, Minimal Lagrangian submanifolds of KählerEinstein
manifolds, Differential geometry and differential equations (Shanghai,
1985) Lecture Notes in Math., vol. 1255, Springer, Berlin, 1987,
pp. 1–12. MR 895393
(88j:53061), http://dx.doi.org/10.1007/BFb0077676
 [dCP]
J.
L. Barbosa and M.
do Carmo, On the size of a stable minimal surface in
𝑅³, Amer. J. Math. 98 (1976),
no. 2, 515–528. MR 0413172
(54 #1292)
 [Ch]
Qing
Chen, On the total curvature and area growth of minimal surfaces in
𝐑ⁿ, Manuscripta Math. 92 (1997),
no. 2, 135–142. MR 1428644
(98c:49073), http://dx.doi.org/10.1007/BF02678185
 [C]
Shiingshen
Chern, Minimal surfaces in an Euclidean space of 𝑁
dimensions, Differential and Combinatorial Topology (A Symposium in
Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965,
pp. 187–198. MR 0180926
(31 #5156)
 [CO]
Shiingshen
Chern and Robert
Osserman, Complete minimal surfaces in euclidean
𝑛space, J. Analyse Math. 19 (1967),
15–34. MR
0226514 (37 #2103)
 [FS]
Doris
FischerColbrie and Richard
Schoen, The structure of complete stable minimal surfaces in
3manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math.
33 (1980), no. 2, 199–211. MR 562550
(81i:53044), http://dx.doi.org/10.1002/cpa.3160330206
 [HL]
Reese
Harvey and H.
Blaine Lawson Jr., Calibrated geometries, Acta Math.
148 (1982), 47–157. MR 666108
(85i:53058), http://dx.doi.org/10.1007/BF02392726
 [H]
A. Huber, On Subharmonic Functions and Differential Geometry in the Large, Comm. Math. Helv., 32(1966), 105136.
 [Li]
Peter
Li, Complete surfaces of at most quadratic area growth,
Comment. Math. Helv. 72 (1997), no. 1, 67–71.
MR
1456316 (98h:53057), http://dx.doi.org/10.1007/PL00000367
 [M]
Mario
J. Micallef, Stable minimal surfaces in Euclidean space, J.
Differential Geom. 19 (1984), no. 1, 57–84. MR 739782
(85e:53009)
 [Oh]
YongGeun
Oh, Second variation and stabilities of minimal Lagrangian
submanifolds in Kähler manifolds, Invent. Math.
101 (1990), no. 2, 501–519. MR 1062973
(91f:58022), http://dx.doi.org/10.1007/BF01231513
 [O1]
Robert
Osserman, Proof of a conjecture of Nirenberg, Comm. Pure Appl.
Math. 12 (1959), 229–232. MR 0105700
(21 #4436)
 [O2]
Robert
Osserman, On complete minimal surfaces, Arch. Rational Mech.
Anal. 13 (1963), 392–404. MR 0151907
(27 #1888)
 [O3]
Robert
Osserman, Global properties of minimal surfaces in 𝐸³
and 𝐸ⁿ, Ann. of Math. (2) 80 (1964),
340–364. MR 0179701
(31 #3946)
 [SSY]
R.
Schoen, L.
Simon, and S.
T. Yau, Curvature estimates for minimal hypersurfaces, Acta
Math. 134 (1975), no. 34, 275–288. MR 0423263
(54 #11243)
 [SW]
Richard
Schoen and Jon
Wolfson, Minimizing volume among Lagrangian submanifolds,
Differential equations: La Pietra 1996 (Florence), Proc. Sympos. Pure
Math., vol. 65, Amer. Math. Soc., Providence, RI, 1999,
pp. 181–199. MR 1662755
(99k:53130)
 [W]
J. Wolfson, Minimal Lagrangian Diffeomeorphisms and the MongeAmpére Equation, to appear J. Diff. Geo.
 [X]
F. Xavier, The Gauss Map of a Complete Nonflat Minimal Surfaces Cannot Omit 7 Points on the Sphere, Ann. of Math. 113(1981) 211214.
 [BdC]
 J.L. Barbosa and M. doCarmo, On the Size of a Stable Minimal Surface in , Amer. J. Math 98(1976) 515528.MR 54:1292
 [B]
 R. Bryant, Minimal Lagrangian Submanifolds of KählerEinstein Manifolds, Lecture Notes in Math. 1255, 112, SpringerVerlag, New York, 1987.MR 88j:53061
 [dCP]
 M. doCarmo and C.K. Peng, Stable Minimal Surfaces in are planes, Bull. Amer. Math., 98 (1976) 515528.MR 54:1292
 [Ch]
 Q. Chen, On the Total Curvature and Area Growth of Minimal Surfaces in , Manu. Math., 92(1997) 135142.MR 98c:49073
 [C]
 S.S. Chern, Minimal Surfaces in an Euclidean Space of N Dimensions, Differential and Combinational Topology, A symposium in honor of Marston Morse, Princeton University Press, Princeton, 1965, 187198.MR 31:5156
 [CO]
 S.S. Chern and R. Osserman, Complete Minimal Surfaces in Euclidean nSpace, J. Analyse Math. 19(1967) 1534. MR 37:2103
 [FS]
 D. FischerColbrie and R. Schoen, The Structure of Complete Stable Minimal Surfaces in 3manifolds of Nonnegative Scalar Curvature, Comm. Pure Appl. Math 33(1980) 199211.MR 81i:53044
 [HL]
 R. Harvey and H. B. Lawson, Calibrated Geoemtries, Acta Math., 148(1982) 47157. MR 85i:53058
 [H]
 A. Huber, On Subharmonic Functions and Differential Geometry in the Large, Comm. Math. Helv., 32(1966), 105136.
 [Li]
 P. Li, Complete Surfaces of at Most Quadratic Area Growth, Comm. Math. Helv., 72(1997) 6771. MR 98h:53057
 [M]
 M. Micallef, Stable Minimal Surfaces in Euclidean Space, J. Diff. Geo, (1994), 5784. MR 85e:53009
 [Oh]
 Y.G.Oh, Second Variation and Stabilities of Minimal Lagrangian Submanifolds in Kähler Manifolds, Invent. Math., 101(1990), 501519.MR 91f:58022
 [O1]
 R. Osserman, Proof of a Conjecture of Nirenberg, Comm. Pure Appl. Math. 12(1959) 229232. MR 21:4436
 [O2]
 R. Osserman, On Complete Minimal Surfaces, Arch. Rational Mech. Anal., 13(1963) 392404. MR 27:1888
 [O3]
 R. Osserman, Global Properties of Minimal Surfaces in and . Ann. of Math. 2, 80(1964) 340364. MR 31:3946
 [SSY]
 R. Schoen, L. Simon and S.T.Yau, Curvature Estimates for Minimal Hypersurfaces, Acta Math., 134(1975) 275288.MR 54:11243
 [SW]
 R. Schoen and J Wolfson, Minimizing Volume Among Lagrangian Submanifolds. preprint. MR 99k:53130
 [W]
 J. Wolfson, Minimal Lagrangian Diffeomeorphisms and the MongeAmpére Equation, to appear J. Diff. Geo.
 [X]
 F. Xavier, The Gauss Map of a Complete Nonflat Minimal Surfaces Cannot Omit 7 Points on the Sphere, Ann. of Math. 113(1981) 211214.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
58E12,
53C15
Retrieve articles in all journals
with MSC (1991):
58E12,
53C15
Additional Information
Chikako Mese
Affiliation:
Department of Mathematics DRB155, University of Southern California, 1042 West 36th Place, Los Angeles, California 90089
Address at time of publication:
Box 5657, Department of Mathematics, Connecticut College, 270 Mohegan Ave., New London, Connecticut 06320
Email:
cmes@conncoll.edu
DOI:
http://dx.doi.org/10.1090/S0002993900056033
PII:
S 00029939(00)056033
Received by editor(s):
April 12, 1999
Published electronically:
July 27, 2000
Additional Notes:
The author would like to thank Professor Richard Schoen for introducing her to this problem and Professor Paul Yang for his interest in this work. Additionally, she thanks Professor Francis Bonahon for many useful conversations.
Communicated by:
Bennett Chow
Article copyright:
© Copyright 2000 American Mathematical Society
