A reflexivity problem concerning the -algebra

Author:
Lajos Molnár

Journal:
Proc. Amer. Math. Soc. **129** (2001), 531-537

MSC (1991):
Primary 47B48, 47B49

Published electronically:
September 20, 2000

MathSciNet review:
1707156

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Let be a compact Hausdorff space and let be a separable Hilbert space. We prove that the group of all order automorphisms of the -algebra is algebraically reflexive.

**1.**Charles J. K. Batty and Lajos Molnár,*On topological reflexivity of the groups of ∗-automorphisms and surjective isometries of ℬ(ℋ)*, Arch. Math. (Basel)**67**(1996), no. 5, 415–421. MR**1411996**, 10.1007/BF01189101**2.**Richard V. Kadison,*A generalized Schwarz inequality and algebraic invariants for operator algebras*, Ann. of Math. (2)**56**(1952), 494–503. MR**0051442****3.**Richard V. Kadison,*Local derivations*, J. Algebra**130**(1990), no. 2, 494–509. MR**1051316**, 10.1016/0021-8693(90)90095-6**4.**Richard V. Kadison and John R. Ringrose,*Derivations and automorphisms of operator algebras*, Comm. Math. Phys.**4**(1967), 32–63. MR**0206735****5.**E. C. Lance,*Automorphisms of certain operator algebras*, Amer. J. Math.**91**(1969), 160–174. MR**0241989****6.**David R. Larson,*Reflexivity, algebraic reflexivity and linear interpolation*, Amer. J. Math.**110**(1988), no. 2, 283–299. MR**935008**, 10.2307/2374503**7.**David R. Larson and Ahmed R. Sourour,*Local derivations and local automorphisms of ℬ(𝒳)*, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 187–194. MR**1077437**, 10.1090/pspum/051.2/1077437**8.**Lajos Molnár,*The set of automorphisms of 𝐵(𝐻) is topologically reflexive in 𝐵(𝐵(𝐻))*, Studia Math.**122**(1997), no. 2, 183–193. MR**1432168****9.**Lajos Molnár and Peter Šemrl,*Order isomorphisms and triple isomorphisms of operator ideals and their reflexivity*, Arch. Math. (Basel)**69**(1997), no. 6, 497–506. MR**1480517**, 10.1007/s000130050152**10.**L. Molnár and M. Gyory,*Reflexivity of the automorphism and isometry groups of the suspension of*, J. Funct. Anal.**159**(1998), 568-586. CMP**99:04****11.**L. Molnár and B. Zalar,*Reflexivity of the group of surjective isometries on some Banach spaces*, Proc. Edinb. Math. Soc.**42**(1999), 17-36. CMP**99:09****12.**L. Molnár and B. Zalar,*On local automorphisms of group algebras of compact groups*, Proc. Amer. Math. Soc.**128**(2000), 93-99. CMP**98:16****13.**L. Molnár,*Reflexivity of the automorphism and isometry groups of -algebras in BDF theory*, Arch. Math. (to appear)**14.**Heydar Radjavi and Peter Rosenthal,*On invariant subspaces and reflexive algebras*, Amer. J. Math.**91**(1969), 683–692. MR**0251569****15.**Russell C. Walker,*The Stone-Čech compactification*, Springer-Verlag, New York-Berlin, 1974. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83. MR**0380698**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47B48,
47B49

Retrieve articles in all journals with MSC (1991): 47B48, 47B49

Additional Information

**Lajos Molnár**

Affiliation:
Institute of Mathematics, Lajos Kossuth University, 4010 Debrecen, P.O. Box 12, Hungary

Email:
molnarl@math.klte.hu

DOI:
https://doi.org/10.1090/S0002-9939-00-05604-5

Keywords:
Reflexivity,
order automorphism,
$C^*$-algebra

Received by editor(s):
November 16, 1998

Received by editor(s) in revised form:
May 3, 1999

Published electronically:
September 20, 2000

Additional Notes:
This research was supported from the following sources: 1) Joint Hungarian-Slovene research project supported by OMFB in Hungary and the Ministry of Science and Technology in Slovenia, Reg. No. SLO-2/96, 2) Hungarian National Foundation for Scientific Research (OTKA), Grant No. T–030082 F–019322, 3) a grant from the Ministry of Education, Hungary, Reg. No. FKFP 0304/1997

Communicated by:
David R. Larson

Article copyright:
© Copyright 2000
American Mathematical Society