POSITIVE SOLUTIONS OF A DEGENERATE ELLIPTIC EQUATION WITH LOGISTIC REACTION

SHINGO TAKEUCHI

(Communicated by David S. Tartakoff)

Abstract. The degenerate elliptic equation \(\lambda \Delta_p u + u^{q-1}(1 - u^r) = 0 \) with zero Dirichlet boundary condition, where \(\lambda \) is a positive parameter, \(2 < p < q \) and \(r > 0 \), is studied in three aspects: existence of maximal solution, \(\lambda \)-dependence of maximal solution and multiplicity of solutions.

1. Introduction and Results

Let \(\Omega \) be a connected, bounded open subset of \(\mathbb{R}^N, N \geq 2 \), with \(C^{2,\alpha} \)-boundary \(\partial \Omega \) for some \(\alpha \in (0,1) \). We consider the following degenerate elliptic equation:

\[
(P)_{\lambda, \Omega}
\begin{cases}
\lambda \Delta_p u + f(u) = 0 & \text{in } \Omega, \\
u \geq 0, \neq 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

where \(\lambda \) is a positive parameter and \(\Delta_p \) is the \(p \)-Laplace operator defined by

\[
\Delta_p u = \text{div}(\nabla |\nabla u|^{p-2}\nabla u)
\]

with \(p > 2 \) and \(f \) is given by

\[
f(u) = u^{q-1}(1 - u^r)
\]

with \(q \geq 2 \) and \(r > 0 \). We often write \((P)_\lambda \) instead of \((P)_{\lambda, \Omega} \). A function \(u = u_\lambda \in W^{1,p}_0(\Omega) \cap L^\infty(\Omega) \) is called a solution of \((P)_\lambda \) if \(u \geq 0 \) a.e. in \(\Omega \), \(u \) does not vanish in a set of positive measure, and

\[
-\lambda \int_\Omega |\nabla u|^{p-2}\nabla u \cdot \nabla \varphi dx + \int_\Omega f(u)\varphi dx = 0
\]

for all \(\varphi \in W^{1,p}_0(\Omega) \). A solution \(u \) of \((P)_\lambda \) is called a maximal solution of \((P)_\lambda \) if \(u \geq v \) a.e. in \(\Omega \) for all solutions \(v \) of \((P)_\lambda \). Obviously, a maximal solution is decided uniquely. If a function \(u \in W^{1,p}(\Omega) \cap L^\infty(\Omega) \) satisfies \(u \geq 0 \) (resp. \(u \leq 0 \)) on \(\partial \Omega \) and

\[
-\lambda \int_\Omega |\nabla u|^{p-2}\nabla u \cdot \nabla \varphi dx + \int_\Omega f(u)\varphi dx \leq 0 \quad (\text{resp. } \geq 0)
\]

Received by the editors April 15, 1999.

2000 Mathematics Subject Classification. Primary 35J70; Secondary 35B30.

Key words and phrases. \(p \)-Laplace operator, degenerate elliptic equation, flat hat, flat core, multiple solutions.

This work was partially supported by JSPS Research Fellowships for Japanese Young Scientists.

\(\copyright 2000 \) American Mathematical Society

433
for all \(\varphi \in W^{1,p}_0(\Omega) \) satisfying \(\varphi \geq 0 \) a.e. in \(\Omega \), then it is called an upper (resp. a lower) solution of (P)\(_\lambda\).

With respect to (P)\(_\lambda\), there are a few works on the equidiffusive case \(p = q \) as follows. Let \(\lambda_1 \) be the first eigenvalue of \(-\Delta_\rho\) under zero Dirichlet boundary condition. In the one-dimensional case \(N = 1 \), Guedda and Véron \cite{10} have shown by phase-plane analysis that if \(\lambda < 1/\lambda_1 \), then (P)\(_\lambda\) has a unique solution \(u_\lambda \), and that a set called the flat core of \(u_\lambda \),

\[
O_\lambda = O_\lambda(u_\lambda) := \{ x \in \Omega; u_\lambda(x) = 1 \}, \tag{1.2}
\]
is non-empty for sufficiently small \(\lambda \). Since the length of \(O_\lambda \) can be indicated explicitly, we can see that as \(\lambda \to 0 \), \(O_\lambda \) spreads out toward the whole of \(\Omega \) with the growth as

\[
\lim_{\lambda \to 0} \lambda^{-1/p} \text{dist}(O_\lambda, \partial \Omega) = C(f, p), \tag{1.3}
\]
where \(C(f, p) = (p_1^{-1/p})^{1/p} \int_1^1 (F(1) - F(s))^{-1/p} ds \) and \(F(s) = \int_s^1 f(t) dt \). In the higher-dimensional case \(N \geq 2 \), phase-plane analysis is no longer useful and one has to use other methods. Constructing a suitable lower solution by using the eigenfunction for \(\lambda_1 \), Kamin and Véron \cite{12} have proved that the unique solution of (P)\(_\lambda\) has a flat core for sufficiently small \(\lambda \) and extended the results of \cite{10}. However, they have given only an estimate \(\text{dist}(O_\lambda, \partial \Omega) \leq C\lambda^{1/p} \) as \(\lambda \to 0 \), where \(C \) is a constant independent of \(\lambda \), without explicit information about \(C \) and any estimate of \(\text{dist}(O_\lambda, \partial \Omega) \) from below. In virtue of an exact estimate for \(O_\lambda \), García-Melián and Sabina de Lis \cite{9} have utilized the solutions for \(N = 1 \), whose dependence on \(\lambda \) is understood well, to make upper and lower solutions and concluded that \(\text{dist}(O_\lambda, \partial \Omega) \) also holds true in the case \(N \geq 2 \). The subdiffusive case \(p > q \) can also be investigated in the same way as the equidiffusive case. One can observe that there exists a unique solution \(u_\lambda \) for every \(\lambda > 0 \) and that as the equidiffusive case, \(O_\lambda(u_\lambda) \) is nonempty for sufficiently small \(\lambda > 0 \) and it grows as in \(\text{dist}(O_\lambda, \partial \Omega) \). See the author and Yamada \cite{19} for \(N = 1 \) and \cite{9} with its Remarks 2.2 b for \(N \geq 2 \). For uniqueness, see also Diaz and Saa \cite{5}.

On the other hand, the structure of solution set in the superdiffusive case \(p < q \) is essentially different from those in the other cases. For \(N = 1 \), using time-map, the author and Yamada \cite{19} have shown that (P)\(_\lambda\) produces a spontaneous bifurcation for \(\lambda \). That is, there exists \(\Lambda > 0 \) such that if \(\lambda > \Lambda \), then (P)\(_\lambda\) has no solution; if \(\lambda = \Lambda \), then (P)\(_\lambda\) has a unique solution; if \(\lambda < \Lambda \), then (P)\(_\lambda\) has exactly two distinct solutions \(u_\lambda \) and \(\overline{u}_\lambda \) satisfying \(u_\lambda > \overline{u}_\lambda \) in \(\Omega \). It also follows from our analysis that as \(\lambda \to 0 \), \(O_\Lambda(u_\lambda) \) spreads out toward the whole of \(\Omega \) with \(\text{dist}(O_\lambda, \partial \Omega) \) and \(u_\lambda \to 0 \) uniformly in \(\Omega \). For \(N \geq 2 \), Guo \cite{11} has studied the case that there exists \(\beta > 0 \) such that \(f(0) = f(\beta) = 0 \), \((\beta - x) f(x) > 0 \) in \((0, \beta) \cup (\beta, +\infty)\), \(\lim_{s \to 0} f(s) / s^{p-1} = 0 \) and \(f(s) / s^{p-1} \) \(< 0 \) in \((0, \beta)\) (the condition \(f''(x) < 0 \) in \cite{11} Theorem 3.3) is a misprint and should be replaced by \(f''(x)/x^{p-1} < 0 \), and have found two distinct solutions. This is the case \(p < q < p + 1 \) in our problem and no information about the shape of solutions is given. In the present paper, we will discuss (P)\(_\lambda\) in the case \(2 < p < q \), \(N \geq 2 \), and study (P)\(_\lambda\) in three aspects: (a) existence of solution, especially maximal solution; (b) \(\lambda \)-dependence of maximal solution; and (c) multiplicity of solutions. As for (a), we can prove the following theorem by the method of upper and lower solutions:
Theorem 1.1. Let $2 < p < q$ and $r > 0$. Then there exists a positive number $\lambda > 0$ such that

(i) if $\lambda > \lambda$, then $(P)_\lambda$ has no solution;
(ii) if $\lambda \leq \lambda$, then $(P)_\lambda$ has a maximal solution \overline{u}_λ;
(iii) if $\lambda_1 < \lambda_2 \leq \lambda$, then $\overline{u}_{\lambda_2} \leq \overline{u}_{\lambda_1}$;
(iv) the mapping $\lambda \mapsto \overline{u}_\lambda$ is left-continuous on $(0, \lambda]$ in $C^{1,\beta'}(\overline{\Omega})$ for any $\beta' \in (0, \beta)$, where β is the constant appearing in Proposition 2.1.

Remark 1.1. Theorem 1.1 (i) has been obtained by Véron [21, Theorem 3] for the p-Laplace operator on a compact Riemannian manifold without boundary.

We will state our result on (b). The proof essentially consists of constructing suitable upper and lower solutions by the idea of García-Melián and Sabina de Lis [8, 9] and the one-dimensional result in [19].

Theorem 1.2. Let $2 < p < q$ and $r > 0$. There exists a positive number $\lambda^* \in (0, \lambda]$ such that

(i) if $\lambda \leq \lambda^*$, then $\mathcal{O}_\lambda = \mathcal{O}_\lambda(\overline{u}_\lambda)$ is non-empty;
(ii) if $\lambda_1 < \lambda_2 \leq \lambda^*$, then $\mathcal{O}_{\lambda_1} \subset \mathcal{O}_{\lambda_2}$;
(iii) for sufficiently small $\varepsilon > 0$, there exists $\lambda \leq \lambda^*$ such that $\Omega \setminus \Omega_\varepsilon \subset \mathcal{O}_\lambda$, where $\Omega_\varepsilon := \{x \in \Omega; \text{dist}(x, \partial \Omega) < \varepsilon\}$.

Furthermore, \mathcal{O}_λ satisfies (1.5) as $\lambda \to 0$.

Remark 1.2. From the last assertion of Theorem 1.2, we can see that the growth order of maximal solution of $(P)_\lambda$ when $\lambda \to 0$ is same as that of case $p \geq q$.

To mention (c), we define the functional Φ on $W^{1, p}_0(\Omega)$ corresponding with $(P)_\lambda$:

$$\Phi(u) = \frac{\lambda}{p} \|\nabla u\|_p^p - \int_{\Omega} F(u)ds,$$

where $F(u) = \int_0^u f(s)ds$ and $\overline{f}(s) := f(s)$ in $[0, 1]$, $\bar{f} := 0$ in $\mathbb{R} \setminus [0, 1]$. By the Mountain Pass Theorem (cf. [11, 17]) for Φ, we can find a distinct solution from \overline{u}_λ for small $\lambda (< \lambda)$, and consequently deduce the multiplicity of solutions. At this time, it plays an important role that $\Phi(\overline{u}_\lambda)$ becomes negative if λ is sufficiently small. In other words, the larger $\mathcal{O}_\lambda(\overline{u}_\lambda)$ spreads out, the more $\Phi(\overline{u}_\lambda)$ decreases.

Theorem 1.3. Let $2 < p < q$ and $r > 0$. There exists a positive number $\Lambda \in (0, \lambda]$ such that if $\lambda < \Lambda$, then $(P)_\lambda$ has another solution $u_\lambda \leq \overline{u}_\lambda$, $\neq \overline{u}_\lambda$.

Remark 1.3. We expect that a solution distinct from \overline{u}_λ exists for all $\lambda \in (0, \lambda)$. Theorem 1.3 whose proof directly utilizes the growth of flat hat, gives a partial result for this problem. It will be discussed in the forthcoming paper [18]. (See also Remark 2.2). In connection with multiplicity for the p-Laplace operator, we can refer to Ambrosetti, Garcia Azorero and Peral [2], Drábek and Pohozaev [7].

2. Proofs of results

The following proposition is fundamental in this paper.

Proposition 2.1. Let u be a solution of $(P)_\lambda$. Then $u \in C^{1,\beta}(\overline{\Omega}) \cap C^{2,\alpha}(\Omega_\varepsilon)$ for some $\beta \in (0, 1)$ and sufficiently small $\varepsilon > 0$, and $0 < u(x) \leq 1$ for all $x \in \Omega$.

Proof of Proposition 2.1. Let \(u \) be any solution of \((P)_\lambda\). Putting \(\varphi = (u - 1)^+ \) := max\{u - 1, 0\} \(\in W^{1,p}_0(\Omega) \) in (1.1), we have

\[
\lambda \int_{\Omega} |(u - 1)^+|^p \, dx = \int_{(u > 1)} f(u)(u - 1) \, dx \leq 0.
\]

Hence \((u - 1)^+ = 0 \) a.e. in \(\Omega \); so \(u(x) \leq 1 \) a.e. in \(\Omega \). This boundedness and a regularity result of Lieberman [13, Theorem 1] deduce that \(u \in C^{1,\beta}(\overline{\Omega}) \) for some \(\beta \in (0, 1) \). Thus, it follows from Vázquez’s maximum principle [20, Theorem 5] that \(0 < u \leq 1 \) in \(\Omega \) and

\[
\begin{align*}
\partial u / \partial n(x) &< 0 \quad \text{on } \partial \Omega, \\
\end{align*}
\]

where \(n \) denotes an outer normal at \(\partial \Omega \). By (2.1) and the fact that \(|\nabla u| \in C^{0,\beta}(\overline{\Omega}) \), there exists \(\varepsilon_0 > 0 \) such that \(|\nabla u| \geq \delta > 0 \) in \(\Omega_{\varepsilon_0} \) for some \(\delta > 0 \). Therefore, since the equation of \((P)_\lambda\) in \(\Omega_{\varepsilon_0} \) becomes a strictly elliptic one, we can conclude from classical theory that \(u \in C^{2,\alpha}(\Omega_{\varepsilon}) \) for all \(\varepsilon \in (0, \varepsilon_0) \).

Lemma 2.1. For sufficiently small \(\lambda > 0 \), there exists a maximal solution \(\overline{w}_\lambda \) such that \(\mathcal{O}_\lambda \) is non-empty and

\[
\limsup_{\lambda \to 0} \lambda^{-1/p} \text{dist}(\mathcal{O}_\lambda, \partial \Omega) \leq C(f, p).
\]

Proof. Take \(R > 0 \) and \(x_0 \in \Omega \) satisfying \(B_R(x_0) \subset \Omega \), where \(B_R(x_0) \) is the ball with radius \(R \) and center at \(x_0 \). To obtain a lower solution of \((P)_\lambda \), we will construct a lower solution \(v_{R,x_0} \) of \((P)_\lambda \). It suffices to find a radially symmetric one, i.e., \(v(\rho) = v_{R,x_0}(x) \) satisfying

\[
\begin{align*}
\lambda(\rho^{N-1} |v_\rho|^{p-2} v_\rho)_\rho + \rho^{N-1} f(v) &\geq 0 \quad \text{in } (0, R), \\
v_\rho(0) = v(R) &= 0,
\end{align*}
\]

where \(\rho = |x - x_0| \). By a change of variable \(\xi = g(\rho) \) such that

\[
\xi = g(\rho) = \begin{cases}
\frac{R^{1-\theta} - \rho^{1-\theta}}{\theta} & \text{if } \theta \neq 1, \\
\log \frac{R}{\rho} & \text{if } \theta = 1,
\end{cases}
\]

where \(\theta := (N - 1)/(p - 1) \), (2.3) can be rewritten as follows:

\[
\begin{align*}
\lambda(|w_\xi|^p - w_\xi)_\xi + g^{-1}(\xi)^p f(w) &\geq 0 \quad \text{in } (0, T), \\
w(0) = w_\xi(T) &= 0,
\end{align*}
\]

where \(w(\xi) = v(g^{-1}(\xi)) \) and \(T = +\infty \) if \(\theta \geq 1 \), \(= \frac{R^{1-\theta}}{1-\theta} \) if \(\theta < 1 \). In order to find a function \(w \) satisfying (2.4), we take any \(b \in (0, T) \) and consider the following auxiliary boundary value problem:

\[
\begin{align*}
\lambda(\phi_\xi)^p - 2\phi_\xi)_\xi + g^{-1}(\xi)^p f(\phi) &= 0 \quad \text{in } (0, b), \\
\phi(0) = \phi(b) &= 0.
\end{align*}
\]

A change of scale \(\xi = b\eta \) gives

\[
\begin{align*}
\lambda(|\psi_\eta|^{p-2} \psi_\eta)_\eta + \{bg^{-1}(\eta)^p f(\psi) &= 0 \quad \text{in } (0, 1), \\
\psi(0) = \psi(1) &= 0,
\end{align*}
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
where $\psi(\eta) = \phi(b\eta)$. Take λ sufficiently small as

$$\lambda \leq \left\{ \frac{bg^{-1}(b^\theta)}{2C(f,p)} \right\}^p.$$

Then, we already know from [19, Theorem 3.3] that (2.6) has a solution ψ such that $\psi(x) = 1$ in $[C_{\lambda,b}/b, 1 - C_{\lambda,b}/b]$, $0 \leq \psi(x) < 1$ otherwise, where

(2.7) $C_{\lambda,b} = \frac{C(f,p)}{g^{-1}(b^\theta)} \lambda^{1/p} \leq b/2$.

Thus, (2.5) also has a solution ϕ such that $\phi(x) = 1$ in $[C_{\lambda,b}, b - C_{\lambda,b}]$ and $0 \leq \phi(x) < 1$ otherwise. Using ϕ, we construct a function w satisfying (2.4) as follows: $w = \phi$ in $[0, C_{\lambda,b})$, $w = 1$ in $[C_{\lambda,b}, T)$. Indeed, since g^{-1} is monotone decreasing,

$$\lambda(\|w\|_{C_0}^p - \|w\|_{C_0}) + g^{-1}(\|w\|_{C_0})\phi(w(\frac{\pi}{\sin(\frac{\pi}{2})})) \geq g^{-1}(\|w\|_{C_0})\phi(\frac{\pi}{\sin(\frac{\pi}{2})})$$

and the boundary conditions are obviously satisfied. Therefore $v(\rho) = w(g(\rho))$ satisfies (2.8), hence the function

(2.8) $v_{R,x_0}(x) = \begin{cases} 1 & \text{if } 0 \leq |x - x_0| \leq g^{-1}(C_{\lambda,b}), \\ \phi(g(|x - x_0|)) & \text{if } g^{-1}(C_{\lambda,b}) < |x - x_0| \leq R \end{cases}$

is a lower solution of (P)$_{\lambda,B_R(x_0)}$. Now, we define $\tilde{v}_{R,x_0}(x) = v_{R,x_0}(x)$ in $B_R(x_0)$. Then, one can observe that \tilde{v} is a lower solution of (P)$_{\lambda,\Omega}$. Taking the function $w \equiv 1$ as an upper solution, we obtain a maximal solution τ_λ of (P)$_{\lambda}$ such that $\tilde{v}_{R,x_0}(x) \leq \tau_\lambda(x) \leq 1$ for all $x \in \Omega$ by Diaz’s book [4, Theorem 4.14] (see also Deuel and Hess [3], and Puel [15, Theorem 4.2]). In particular, it follows from (2.5) that $\tau_\lambda(x) = 1$ in $B_{g^{-1}(C_{\lambda,b})}(x_0)$. By the arbitrariness of x_0 satisfying $B_R(x_0) \subset \Omega$ and the uniqueness of maximal solution, it holds that $\tau_\lambda(x) = 1$ in $\Omega \setminus \Omega_{R'}$, where $R' = R(\lambda, b) = R - g^{-1}(C_{\lambda,b})$. Thus $\text{dist}(O_{\lambda,\partial\Omega}) \leq R'$. It follows from (2.7) and l’Hospital’s theorem that $R'(\lambda, b) = R^\theta C_{\lambda,b} + o(\lambda^{1/p})$ as $\lambda \to 0$; so we obtain

$$\limsup_{\lambda \to 0} \lambda^{-1/p} \text{dist}(O_{\lambda,\partial\Omega}) \leq \lim_{\lambda \to 0} \lambda^{-1/p} R'(\lambda, b) = \left\{ \frac{R}{g^{-1}(b)} \right\}^\theta C(f,p).$$

Passing to the limit as $b \to 0$, we conclude (2.2).

\textbf{Proof of Theorem 4.14} Define

$$\bar{\lambda} = \sup\{\lambda > 0; (P)_\lambda \text{ has a solution}\}.$$

Since Lemma 2.1 implies $\bar{\lambda} > 0$, we will show $\bar{\lambda} < +\infty$ to see (i). Suppose that there exists a sequence $\{\lambda_m\}_{m=1}^\infty$ such that $\lambda_m \to \infty$ as $m \to \infty$ and $(P)_{\lambda_m}$ has a solution $u_m = u_{\lambda_m}$. Putting $\lambda = \lambda_m$ and $u = \varphi = u_m$ in (1.1), we have

$$\lambda_m \|\nabla u_m\|_p^p = \int_{\Omega} u_m f(u_m) dx.$$

Since $sf(s) \leq s^p$ for $s \in [0,1]$ if $p < q$, it follows that

$$\lambda_m \|\nabla u_m\|_p^p \leq \|\lambda_m u_m\|_p^p.$$

Combining this inequality and the Poincaré inequality, we obtain $C\lambda_m \|u_m\|_p^p \leq \|\nabla u_m\|_p^p$, where C is a positive constant. Since $\|u_m\|_p^p > 0$, the inequality is a contradiction for sufficiently large m. Next, we will prove (ii) and (iii). Consider the case $\lambda < \bar{\lambda}$. From the definition of $\bar{\lambda}$, for $\lambda < \bar{\lambda}$ there exists $\mu \in (\lambda, \bar{\lambda})$ such that $(P)_\mu$ has a solution u_μ. By an easy calculation, u_μ is a lower solution of $(P)_\lambda$. Since $u \equiv 1$ is an upper solution of $(P)_\lambda$, it follows from [4, Theorem 4.14] that $(P)_\lambda$ admits a maximal solution τ_λ satisfying $\tau_\lambda \geq u_\mu$. (Note that the same arguments give the proof of (iii).) The case $\lambda = \bar{\lambda}$ is treated as follows. Let $\{\lambda_m\}_{m=1}^\infty$ be a positive increasing sequence satisfying $0 < \lambda_m < \bar{\lambda}$ and $\lambda_m \to \bar{\lambda}$.
as \(m \to \infty \), and let \(\varpi_m \) be the maximal solution of \((P)_{\lambda_m}\). From \cite[Theorem 1]{[13]} we know that \(\{\varpi_m\} \) is uniformly bounded in \(C^{1,\beta}(\overline{\Omega}) \) for some \(\beta \in (0,1) \). Thus, Ascoli-Arzelà’s theorem assures that there exist \(\varpi_\infty \) and a subsequence of \(\{\varpi_m\} \), still denoted by \(\{\varpi_m\} \), such that \(\varpi_m \to \varpi_\infty \) in \(C^{1,\beta}(\overline{\Omega}) \) for each \(\beta \in (0,\beta) \). It is easy to see that \(\varpi_\infty \geq 0 \) in \(\Omega \) and that \(\varpi_\infty \) satisfies \((\text{iv})\). To observe that \(\varpi_\infty \neq 0 \), we assume \(\varpi_\infty \equiv 0 \). Since \(\{\varpi_m\} \) converges to 0 uniformly in \(\Omega \) as \(m \to \infty \), it follows from \(p < q \) that for sufficiently large \(m \)

\[
C||\varpi_m||_p^p \leq ||\nabla \varpi_m||_p^p = \frac{1}{\lambda_m} \int_\Omega \varpi_m f(\varpi_m) dx \leq \frac{C}{2}||\varpi_m||_p^p,
\]

which contradicts to \(||\varpi_m||_p^p > 0 \). Therefore, \(\varpi_\infty \) is a solution of \((P)_{\lambda_\infty}\). We have to show the maximality of \(\varpi_\infty \). Suppose that \(\varpi_\infty \) is not maximal. Then, \((P)_{\lambda_\infty}\) has a maximal solution \(\varpi_\infty \geq \varpi_\infty \) (\(\neq \varpi_\infty \)) and there exists \(x_0 \in \Omega \) such that \(\varpi_\infty(x_0) < \varpi_\infty(x_0) \). By (iii), since \(\varpi_m \) decreases toward \(\varpi_\infty \) as \(m \to \infty \), it holds that \(\varpi_\infty(x_0) \leq \varpi_m(x_0) \) for sufficiently large \(m \). On the other hand, it follows from (iii) and the fact \(\lambda_m < \lambda_\infty \) that \(\varpi_\infty(x_0) \leq \varpi_m(x_0) \). These inequalities contradict each other; so \(\varpi_\infty \) is maximal, which can be written as \(\varpi_\infty \). Finally, one can observe (iv) in the similar way as the proof for maximality of \(\varpi_\infty \).

Proof of Theorem \cite{[13]} The existence of \(\lambda^* \) satisfying (i) is directly induced from Lemma \cite{[24]} and (ii) follows from (iii) of Theorem \cite{[11]}. From the proof of Lemma \cite{[24]} (iii) is obvious for sufficiently small \(\varepsilon > 0 \) such that \(\Omega \setminus \Omega_\varepsilon \neq \emptyset \). It remains to show \(\lambda \leq 0 \) near \(\partial \Omega \).

Take any \(x_0 \in \partial \Omega \). Let \(a > 0 \) (resp. \(R > 0 \)) be sufficiently small (resp. large) such that the annulus \(A := \{x \in \mathbb{R}^N; a < |x - y_0| < R\} \), where \(y_0 := x_0 + an \) and \(n \) denotes the outer normal at \(x_0 \), satisfies \(\Omega \subset A \). Define \(\hat{u}_\lambda \) by \(\hat{u}_\lambda := \varpi_\lambda \) in \(\Omega \), \(= 0 \) in \(A \setminus \Omega \). Then \(\hat{u}_\lambda \) is a lower solution of \((P)_{\lambda,A};\) so a maximal solution \(\varpi_{\lambda,A} \) of \((P)_{\lambda,A}\) exists, in particular

\[
\varpi_\lambda(x) \leq \varpi_{\lambda,A}(x) \quad \text{in} \quad \Omega.
\]

From the maximality, \(\varpi_{\lambda,A} \) is radially symmetric on \(A \); hence \(v(\rho) = \varpi_{\lambda,A}(x) \) satisfies

\[
\begin{align*}
\lambda(\rho^{N-1}|v_\rho|^{p-2}v_\rho)_\rho + \rho^{N-1}f(v) &= 0 \quad \text{in} \quad (a,R), \\
v(a) &= v(R) = 0,
\end{align*}
\]

where \(\rho = |x - y_0| \). As in the proof of Lemma \cite{[24]}, we introduce a change of variable

\[
\xi = h(\rho) = \begin{cases}
\frac{\rho^{1-\theta}}{1-\theta} & \text{if } \theta \neq 1, \\
\log \frac{\rho}{\rho_0} & \text{if } \theta = 1,
\end{cases}
\]

where \(\theta := (N-1)/(p-1) \); then \cite{[24]}, \cite{[24]} can be rewritten as

\[
\begin{align*}
\lambda(|w_\xi|^{p-2}w_\xi)_\xi + h^{-1}(\xi)^\rho f(w) &= 0 \quad \text{in} \quad (0,T), \\
w(0) &= w(T) = 0,
\end{align*}
\]

where \(w(\xi) = v(h^{-1}(\xi)) \) and \(T = h(R) \). It is easy to see that \(w \) is a lower solution of

\[
\begin{align*}
\lambda(|\phi_\xi|^{p-2}\phi_\xi)_\xi + h^{-1}(b)^\rho f(\phi) &= 0 \quad \text{in} \quad (0,b), \\
\phi(0) &= 0, \quad \phi(b) = 1.
\end{align*}
\]
for any \(b \in (0, T) \). Thus, (2.11) has a maximal solution \(\overline{\phi} \) such that
\[
(2.12) \quad w(\xi) \leq \overline{\phi}(\xi) \text{ in } (0, b).
\]
In fact, we know from [19] Theorem 3.3] that \(0 < \overline{\phi}(\xi) < 1 \) in \((0, D_{\lambda, b})\), \(\overline{\phi}(\xi) = 1 \) otherwise, where \(D_{\lambda, b} = C(f, p)\lambda^{1/p}/h^{-1}(b)^\theta (\leq b/2) \). Hence, it follows from \((2.10)\) and \((2.12)\) that \(\overline{\pi}_\lambda(x) = \phi(h(|x - y_0|)) \leq 1 \) if \(x \in \Omega \) and \(a < |x - y_0| < h^{-1}(D_{\lambda, b}) \). This means that \(\text{dist}(x_0, \Omega) \geq h^{-1}(D_{\lambda, b}) - a \) for each \(x_0 \in \partial \Omega \). Making \(a > 0 \)
(resp. \(R > 0 \)) sufficiently small (resp. large), one can get an uniform estimate \(\text{dist}(\Omega, \partial \Omega) \geq h^{-1}(D_{\lambda, b}) - a \). Since \(h^{-1}(D_{\lambda, b}) - a = a^p D_{\lambda, b} + o(\lambda^{1/p}) \) as \(\lambda \to 0 \), it is possible to obtain that
\[
\liminf_{\lambda \to 0} \lambda^{-1/p} \text{dist}(\Omega, \partial \Omega) \geq \left\{ \frac{a}{h^{-1}(b)} \right\}^\theta C(f, p).
\]
Passing to the limit \(b \to 0 \), we have
\[
(2.13) \quad \liminf_{\lambda \to 0} \lambda^{-1/p} \text{dist}(\Omega, \partial \Omega) \geq C(f, p);
\]
so combining \((2.13)\) and \((2.2)\) of Lemma 2.1, we conclude (1.3).

Remark 2.1. From \((2.13)\) and more delicate analyses of \((2.2)\), we can see
\[
\lim_{\lambda \to 0} \lambda^{-1/p} \sup_{x \in \partial \Omega} \text{dist}(x, \Omega) = C(f, p),
\]
which implies that \(\Omega \) uniformly spreads out toward the whole of \(\Omega \) as the order of \(\lambda^{1/p} \).

Proof of Theorem 2.3. In virtue of Proposition 2.1 it is well known that \(u \) is a solution of (P)\(_\lambda \) if and only if \(u \) is a critical point of the \(C^1 \)-functional \(\Phi \), defined by (1.4) (cf. Rabinowitz’s book \cite{17} Proposition B.10). We will check all conditions of the Mountain Pass Theorem (cf. \cite{17}). Take any \(q^* \in (p, p^*) \), where \(p^* := Np/(N - p) \) if \(p < N \), := +\(\infty \) if \(p \geq N \), and fix it. Since \(p < q \), for any \(\delta > 0 \) there exists \(C_\delta > 0 \) such that \(|f(s)| \leq \delta s^{p-1} + C_\delta s^{q - 1} \). First, it is easy to see that \(\Phi \) satisfies the Palais-Smale condition. Indeed, let \(\{u_n\} \) be any sequence in \(W_0^{1,p}(\Omega) \) such that \(\Phi(u_n) \) is bounded and \(\Phi(u_n) \to 0 \) as \(n \to \infty \). Then, it follows from the boundedness of \(\overline{F} \) that \(\|\nabla u_n\|_p \) is bounded; namely \(\{u_n\} \) is bounded in \(W_0^{1,p}(\Omega) \). Thus, as a result of Dinca, Jebelean and Mawhin \cite{16} Lemma 2.1 yields the assertion. In addition, the Sobolev inequality assures that there exist constants \(\gamma, \rho > 0 \) such that \(\Phi(u) \geq \gamma \) if \(\|\nabla u\|_p = \rho \), because
\[
\Phi(u) \geq \frac{\lambda}{p} \|\nabla u\|_p^p - \frac{\delta}{p} \|u\|_p^p - \frac{C_\delta}{q^*} \|u\|_{q^*}^{q^*} \\
\geq \left(\frac{\lambda - C_1 \delta}{p} - \frac{C_2 C_\delta}{q^*} \|\nabla u\|_{q^*-p} \right) \|\nabla u\|_p^p \geq \gamma > 0,
\]
where \(C_1 \) and \(C_2 \) are positive constants, provided that \(\delta \in (0, \lambda/C_1) \) and \(\|\nabla u\|_p = \rho \) is sufficiently small. Next, clearly \(\Phi(0) = 0 \) and we will show that the maximal solution \(\overline{\pi}_\lambda \) of (P)\(_\lambda \) satisfies \(\Phi(\overline{\pi}_\lambda) < 0 \) for sufficiently small \(\lambda > 0 \). Since \(\lambda \|\overline{\pi}_\lambda\|_p = \int_\Omega \overline{\pi}_\lambda f(\overline{\pi}_\lambda) dx \), \(\Phi(\overline{\pi}_\lambda) \) can be expressed as
\[
\Phi(\overline{\pi}_\lambda) = \left(\frac{1}{p} - \frac{1}{q} \right) \|\overline{\pi}_\lambda\|_q^q - \left(\frac{1}{p} - \frac{1}{q + r} \right) \|\overline{\pi}_\lambda\|_{q + r}^{q + r}.
\]
with use of \(\overline{F}(u) = F(u) \), due to Proposition 2.1. Noting that \(\|u\| = |\lambda| + \int_{\Omega \setminus \Omega_{\lambda}} |\nabla u|^{\tau} \) for any \(\tau \geq 1 \), we have

\[
\Phi(\nabla) = \int_{\Omega \setminus \Omega_{\lambda}} \left(\frac{1}{p} - \frac{1}{q} \right) |\nabla|^q - \left(\frac{1}{p} - \frac{1}{q + r} \right) |\nabla|^{|q + r|} \, dx - \left(\frac{1}{q} - \frac{1}{q + r} \right) |\Omega_{\lambda}|
\]

\[
\leq C|\Omega \setminus \Omega_{\lambda}| - \left(\frac{1}{q} - \frac{1}{q + r} \right) |\Omega_{\lambda}|
\]

\[
= C|\Omega| - \left(C + \frac{1}{q} - \frac{1}{q + r} \right) |\Omega_{\lambda}|.
\]

Take \(\varepsilon > 0 \) so sufficiently small that

\[
|\Omega_{\varepsilon}| < \frac{\frac{1}{q} - \frac{1}{q + r}}{C + \frac{1}{q} - \frac{1}{q + r}} |\Omega|.
\]

We see from (iii) of Theorem 1.2 that there exists \(\Lambda \in (0, \lambda] \) such that if \(\lambda \leq \Lambda \), then \(|\Omega_{\lambda}| > |\Omega \setminus \Omega_{\varepsilon}| \). Thus, if \(\lambda \in (0, \Lambda) \), then

\[
\Phi(\nabla_{\lambda}) < C|\Omega| - \left(C + \frac{1}{q} - \frac{1}{q + r} \right) |\Omega \setminus \Omega_{\varepsilon}|
\]

\[
= \left(C + \frac{1}{q} - \frac{1}{q + r} \right) |\Omega_{\varepsilon}| - \left(\frac{1}{q} - \frac{1}{q + r} \right) |\Omega| < 0.
\]

Therefore, all conditions for the Mountain Pass Theorem hold; so we obtain a solution \(u_{\lambda} \) of (P), which is distinct from \(u \) and satisfies \(\Phi(u_{\lambda}) > 0 \). \(\square \)

Remark 2.2. In connection with multiplicity of solutions, we have known a number of results on the linear diffusion case. Rabinowitz \[16\] has studied the case \(p = 2 < q \) (for example, equations like \(\lambda u + u^2(1 - u) = 0 \)) by combining critical point theory and the Leray-Schauder degree theory, and proved there exists \(\Lambda > 0 \) such that if \(\lambda > \Lambda \), then (P) has no solution and if \(\lambda < \Lambda \), then (P) has at least two distinct solutions (see also Ambrosetti and Rabinowitz \[1\], and Rabinowitz \[17\]). Particularly, when \(\Omega \) is a ball, Ouyang and Shi \[14\] have obtained a precise global bifurcation diagram and concluded that there exist exactly two solutions for small \(\lambda \) by using a bifurcation theorem of Crandall and Rabinowitz.

Acknowledgements

The author would like to thank Professor Yoshio Yamada and Professor Takashi Suzuki for many useful and encouraging comments. He also thanks Professor José Sabina de Lis for sending the preprint \[9\].

References

POSITIVE SOLUTIONS OF A DEGENERATE ELLIPTIC EQUATION

Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
E-mail address: stakeuchi@nyc.odn.ne.jp