Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Positive solutions of a degenerate elliptic equation with logistic reaction


Author: Shingo Takeuchi
Journal: Proc. Amer. Math. Soc. 129 (2001), 433-441
MSC (2000): Primary 35J70; Secondary 35B30
DOI: https://doi.org/10.1090/S0002-9939-00-05723-3
Published electronically: August 29, 2000
MathSciNet review: 1800233
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

The degenerate elliptic equation $\lambda \Delta_p u +u^{q-1}(1-u^r)=0$ with zero Dirichlet boundary condition, where $\lambda$ is a positive parameter, $2<p<q$ and $r>0$, is studied in three aspects: existence of maximal solution, $\lambda$-dependence of maximal solution and multiplicity of solutions.


References [Enhancements On Off] (What's this?)

  • 1. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. MR 51:6412
  • 2. A. Ambrosetti, J. Garcia Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219-242. MR 97b:35059
  • 3. J. Schoenenberger-Deuel and P. Hess, A Criterion for the existence of solutions of non-linear elliptic boundary value problems, Proc. Royal Soc. Edinburgh Sect. A 74 (1975), 49-54. MR 55:13070
  • 4. J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries, Vol. I Elliptic Equations, Research Notes in Math., Vol. 106, Pitman, New York, 1985. MR 88d:35058
  • 5. J. I. Diaz and J. E. Saa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 521-524. MR 89e:35051
  • 6. G. Dinca, P. Jebelean and J. Mawhin, A result of Ambrosetti-Rabinowitz type for $p$-Laplacian, Qualitative problems for differential equations and control theory, World Sci. Publishing, River Edge, 1995, 231-242. MR 96m:35097
  • 7. P. Drábek and S. I. Pohozaev, Positive solutions for the $p$-Laplacian$:$ applications of the fibrering method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 703-726. MR 98h:35061
  • 8. J. García-Melián and J. Sabina de Lis, The behaviour of stationary solutions to some nonlinear diffusion problems, Nonlinear Anal. (Proc. 2nd World Congress of Nonlinear Analysts) 30:8 (1997), 5499-5504.
  • 9. J. García-Melián and J. Sabina de Lis, Stationary profiles of degenerate problems when a parameter is large, Differential Integral Equations (to appear).
  • 10. M. Guedda and L. Véron, Bifurcation phenomena associated to the $p$-Laplace operator, Trans. Amer. Math. Soc. 310 (1988), 419-431. MR 89j:35024
  • 11. Z. M. Guo, Some existence and multiplicity results for a class of quasilinear elliptic eigenvalue problems, Nonlinear Anal. 18 (1992), 957-971. MR 93c:35045
  • 12. S. Kamin and L. Véron, Flat core properties associated to the $p$-Laplace operator, Proc. Amer. Math. Soc. 118 (1993), 1079-1085. MR 93j:35071
  • 13. G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219. MR 90a:35098
  • 14. T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, J. Differential Equations 146 (1998), 121-156. MR 99f:35061
  • 15. J. P. Puel, Some results on quasi-linear elliptic equations, Recent advances in nonlinear elliptic and parabolic problems (Nancy, 1988), Research Notes in Math., Vol. 208, Pitman, 1989, 306-318. MR 91f:35104
  • 16. P. H. Rabinowitz, Pairs of positive solutions of nonlinear elliptic partial differential equations, Indiana Math. J. 23 (1973), 172-185. MR 47:7214
  • 17. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, 1986. MR 87j:58024
  • 18. S. Takeuchi, Multiplicity result for a degenerate elliptic equation with logistic reaction, preprint.
  • 19. S. Takeuchi and Y. Yamada, Asymptotic properties of a reaction-diffusion equation with degenerate $p$-Laplacian, Nonlinear Anal. (to appear).
  • 20. J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202. MR 86m:35018
  • 21. L. Véron, Première valeur propre non nulle du $p$-laplacien et équations quasi linéaires elliptiques sur une variété riemannienne compacte, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 271-276. MR 93b:35037

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35J70, 35B30

Retrieve articles in all journals with MSC (2000): 35J70, 35B30


Additional Information

Shingo Takeuchi
Affiliation: Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
Email: stakeuchi@nyc.odn.ne.jp

DOI: https://doi.org/10.1090/S0002-9939-00-05723-3
Keywords: $p$-Laplace operator, degenerate elliptic equation, flat hat, flat core, multiple solutions
Received by editor(s): April 15, 1999
Published electronically: August 29, 2000
Additional Notes: This work was partially supported by JSPS Research Fellowships for Japanese Young Scientists.
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society