Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Diagonal type conditions on group C$^*$-algebras


Authors: Nico Spronk and Peter Wood
Journal: Proc. Amer. Math. Soc. 129 (2001), 609-616
MSC (1991): Primary 22D05, 22D10, 22D25; Secondary 43A65, 43A07, 46L09
DOI: https://doi.org/10.1090/S0002-9939-00-05788-9
Published electronically: July 27, 2000
MathSciNet review: 1800241
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a locally compact group with $\mathbf{C}^* (G)$ and $\mathbf{C}^*_r (G)$ its enveloping and reduced C$^*$-algebras respectively. We show that if $\mathbf{C}^*(G)$ is residually finite dimensional, then $G$is maximally almost periodic, and $\mathbf{C}^*_r (G)$ is residually finite dimensional if and only if $G$ is both amenable and maximally almost periodic. Letting $\lambda_G$ be the left regular representation of $G$, we show that a certain quasidiagonality condition on $\{\lambda_G(s):s\in G\}$ implies that $G$ is amenable.


References [Enhancements On Off] (What's this?)

  • 1. R. C. Alperin.
    An elementary account of Selberg's Lemma.
    L'Enseignement Math., 33:269-273, 1987. MR 89f:20051
  • 2. E. Bédos.
    On the C$^*$-algebra generated by the left regular representation of a locally compact group.
    Proc. Amer. Math. Soc., 120(2):603-608, 1994. MR 94d:22004
  • 3. M. E. B. Bekka, E. Kaniuth, A. T. Lau, and G. Schlichting.
    On C$^*$-algebras associated with locally compact groups.
    Proc. Amer. Math. Soc., 124(10):3151-3158, 1996. MR 96m:22010
  • 4. M. E. B. Bekka, A. T. Lau, and G. Schlichting.
    On invariant subalgebras of the Fourier-Stieljes algebra of a locally compact group.
    Math. Ann., 294:513-522, 1992. MR 93k:43006
  • 5. M. D. Choi.
    The full C$^*$-algebra of the free group on two generators.
    Pacific J. Math., 87:41-48, 1980. MR 82b:46069
  • 6. M. Dadarlat.
    On the approximation of quasidiagonal C$^*$-algebras. J. Funct. Anal. 167:69-78, 1999. CMP 2000:01
  • 7. K. R. Davidson.
    C$^*$-algebras by example, volume 6 of Fields Institute Monographs.
    American Mathematical Society, 1996. MR 97i:46095
  • 8. P. de la Harpe.
    Operator algebras, free groups and other groups.
    Astérisque, 232:121-153, 1995. MR 97m:46092
  • 9. P. de la Harpe, A.G. Robertson, and A. Valette.
    On exactness of group C$^*$-algebras.
    Quart. J. Math. Oxford (2), 45:499-513, 1994. MR 96g:46049
  • 10. C. F. Dunkl and D. E. Ramirez.
    C$^*$-algebras generated by Fourier-Stieljes transforms.
    Trans. Amer. Math. Soc., 164:435-441, 1972. MR 46:9646
  • 11. R. Exel and T. A. Loring.
    Finite-dimensional representations of free product C$^*$-algebras.
    Internat. J. Math., 3(4):469-476, 1992. MR 93f:46091
  • 12. P. Eymard.
    L'algèbre de Fourier d'un groupe localement compact.
    Bull. de la Soc. Math. France, 92:181-236, 1964. MR 37:4208
  • 13. J. M. G. Fell.
    Weak containment and Kronecker products of group representations.
    Pacific J. Math., 13:503-510, 1969. MR 27:5865
  • 14. D. Hadwin.
    Strongly quasidiagonal C$^*$-algebras.
    J. Operator Theory, 18:3-15, 1987. MR 89d:46060
  • 15. T. W. Palmer.
    Classes of nonabelian, noncompact, locally compact groups.
    Rocky Mountain J. Math., 8(4):683-741, 1978. MR 81j:22003
  • 16. A. T. Paterson.
    Amenability, volume 29 of Mathematical Surveys and Monographs.
    American Mathematical Society, 1988. MR 90e:43001
  • 17. M. A. Rieffel.
    Induced representations of C$^*$-algebras.
    Advan. Math., 13:176-257, 1974. MR 50:5489
  • 18. J. Rosenberg.
    Quasidiagonality and nuclearity.
    J. Operator Theory, 18:15-18, 1987.
    Appendix to Strongly quasidiagonal C$^*$-algebras by D. Hadwin. MR 89d:46060
  • 19. J.-P. Serre.
    Trees.
    Springer, 1980.
    Translated by J. Stillwell from Arbres, Amalgams, $\mathrm{SL}_2$. MR 82c:20083
  • 20. D. Voiculescu.
    A non-commutative Weyl-Von Neumann theorem.
    Rev. Roumaine de Math. Pures Appl., 21:97-113, 1976. MR 54:3427
  • 21. D. Voiculescu.
    Around quasidiagonal operators.
    Integr. Equat. Oper. Th., 17:137-149, 1993. MR 94e:47029
  • 22. S. Wassermann.
    Exact C$^*$-algebras and related topics, volume 19 of Lecture Notes Series.
    Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, 1994. MR 95b:46081
  • 23. C. Chou, A.-T. Lau, and J. Rosenblatt, Approximation of compact operators by sums of translation. Ill. J. Math., 29(2):340-350, 1985. MR 86g:22007

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 22D05, 22D10, 22D25, 43A65, 43A07, 46L09

Retrieve articles in all journals with MSC (1991): 22D05, 22D10, 22D25, 43A65, 43A07, 46L09


Additional Information

Nico Spronk
Affiliation: Department of Pure Mathematics, University of Waterloo, Ontario, Canada N2L 3G1
Email: nspronk@math.uwaterloo.ca

Peter Wood
Affiliation: Department of Pure Mathematics, University of Waterloo, Ontario, Canada N2L 3G1
Email: pwood@math.uwaterloo.ca

DOI: https://doi.org/10.1090/S0002-9939-00-05788-9
Keywords: Group C$^*$-algebra, maximal almost periodicity, residual finite dimensionality, amenability, quasidiagonality
Received by editor(s): April 29, 1999
Published electronically: July 27, 2000
Additional Notes: The first author was partially supported by NSERC
The second author was partially supported by OGS
Communicated by: David R. Larson
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society