Unique ergodicity on compact homogeneous spaces

Author:
Barak Weiss

Journal:
Proc. Amer. Math. Soc. **129** (2001), 585-592

MSC (1991):
Primary 22F30

Published electronically:
August 28, 2000

MathSciNet review:
1800240

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Extending results of a number of authors, we prove that if is the unipotent radical of an -split solvable epimorphic subgroup of a real algebraic group which is generated by unipotents, then the action of on is uniquely ergodic for every cocompact lattice in . This gives examples of uniquely ergodic and minimal two-dimensional flows on homogeneous spaces of arbitrarily high dimension. Our main tools are the Ratner classification of ergodic invariant measures for the action of a unipotent subgroup on a homogeneous space, and a simple lemma (the `Cone Lemma') about representations of epimorphic subgroups.

**[BHM]**A. Białynicki-Birula, G. Hochschild, and G. D. Mostow,*Extensions of representations of algebraic linear groups*, Amer. J. Math.**85**(1963), 131–144. MR**0155938****[BB]**Frédéric Bien and Armand Borel,*Sous-groupes épimorphiques de groupes linéaires algébriques. I*, C. R. Acad. Sci. Paris Sér. I Math.**315**(1992), no. 6, 649–653 (French, with English and French summaries). MR**1183796****[Bo]**Rufus Bowen,*Weak mixing and unique ergodicity on homogeneous spaces*, Israel J. Math.**23**(1976), no. 3-4, 267–273. MR**0407233****[D1]**S. G. Dani,*Bernoullian translations and minimal horospheres on homogeneous spaces*, J. Indian Math. Soc. (N.S.)**40**(1976), no. 1-4, 245–284 (1977). MR**0460592****[D2]**S. G. Dani,*Divergent trajectories of flows on homogeneous spaces and Diophantine approximation*, J. Reine Angew. Math.**359**(1985), 55–89. MR**794799**, 10.1515/crll.1985.359.55**[DMa]**S. G. Dani and G. A. Margulis,*Limit distributions of orbits of unipotent flows and values of quadratic forms*, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 91–137. MR**1237827****[EP]**Robert Ellis and William Perrizo,*Unique ergodicity of flows on homogeneous spaces*, Israel J. Math.**29**(1978), no. 2-3, 276–284. MR**0473095****[F]**Harry Furstenberg,*The unique ergodicity of the horocycle flow*, Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Springer, Berlin, 1973, pp. 95–115. Lecture Notes in Math., Vol. 318. MR**0393339****[Ma]**G. A. Margulis,*Compactness of minimal closed invariant sets of actions of unipotent groups*, Geom. Dedicata**37**(1991), no. 1, 1–7. MR**1094225**, 10.1007/BF00150402**[Mo]**Shahar Mozes,*Epimorphic subgroups and invariant measures*, Ergodic Theory Dynam. Systems**15**(1995), no. 6, 1207–1210. MR**1366316**, 10.1017/S0143385700009871**[R1]**Marina Ratner,*On Raghunathan’s measure conjecture*, Ann. of Math. (2)**134**(1991), no. 3, 545–607. MR**1135878**, 10.2307/2944357**[R2]**Marina Ratner,*Raghunathan’s topological conjecture and distributions of unipotent flows*, Duke Math. J.**63**(1991), no. 1, 235–280. MR**1106945**, 10.1215/S0012-7094-91-06311-8**[R3]**M. Ratner,*Invariant measures and orbit closures for unipotent actions on homogeneous spaces*, Geom. Funct. Anal.**4**(1994), no. 2, 236–257. MR**1262705**, 10.1007/BF01895839**[Sh]**Nimish A. Shah,*Uniformly distributed orbits of certain flows on homogeneous spaces*, Math. Ann.**289**(1991), no. 2, 315–334. MR**1092178**, 10.1007/BF01446574**[V]**William A. Veech,*Unique ergodicity of horospherical flows*, Amer. J. Math.**99**(1977), no. 4, 827–859. MR**0447476****[W]**Barak Weiss,*Finite-dimensional representations and subgroup actions on homogeneous spaces*, Israel J. Math.**106**(1998), 189–207. MR**1656889**, 10.1007/BF02773468**[Wi]**Dave Witte,*Measurable quotients of unipotent translations on homogeneous spaces*, Trans. Amer. Math. Soc.**345**(1994), no. 2, 577–594. MR**1181187**, 10.1090/S0002-9947-1994-1181187-4

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
22F30

Retrieve articles in all journals with MSC (1991): 22F30

Additional Information

**Barak Weiss**

Affiliation:
Department of Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11794

Email:
barak@math.sunysb.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05791-9

Received by editor(s):
April 22, 1999

Published electronically:
August 28, 2000

Communicated by:
Michael Handel

Article copyright:
© Copyright 2000
American Mathematical Society