NO n-POINT SET IS σ-COMPACT

KHALID BOUHJAR, JAN J. DIJKSTRA, AND R. DANIEL MAULDIN

Abstract. Let n be an integer greater than 1. We prove that there exist no F_σ-subsets of the plane that intersect every line in precisely n points.

Let $n \geq 2$ be some fixed integer. A subset of the plane \mathbb{R}^2 is called an n-point set if every line in the plane meets the set in precisely n points. The question of whether n-point sets can be Borel sets is a long standing open problem (see e.g. Mauldin [6] for details). Sierpinski [7, p. 447] has given a simple example of a closed set that meets every line in 0 points. It was shown by Baston and Bostock [1] and by Bouhjar, Dijkstra, and van Mill [2] that 2-point sets, respectively 3-point sets, cannot be F_σ in the plane. Both papers use a method suggested by Larman [5] for the case $n = 2$ which consists of proving on the one hand that 2-point sets cannot contain arcs and on the other hand that 2-point sets that are F_σ must contain arcs. Observe that to prove the result that is the subject of this note Larman’s program cannot be followed because it was shown in [2] that n-point sets can contain arcs whenever $n \geq 4$.

Theorem. Let $n \geq 2$. No n-point set is an F_σ-subset of the plane.

The three authors of this note each, independently of each other, found a proof for this theorem. We decided to publish the shortest proof jointly.

Proof. Assume that A is an n-point set that is an F_σ-subset of the plane. Let xy be an arbitrary rectangular coordinate system for the plane and let λ be the Lebesgue measure on \mathbb{R}. According to [2] Proposition 3.2] there exists a nondegenerate interval $[a, b]$ on the x-axis and continuous functions $f_1 < f_2 < \cdots < f_n$ from $[a, b]$ into \mathbb{R} such that A contains the graph of each f_i. Consider an f_i and its graph G_i. Since A is an n-point set each horizontal line intersects G_i in at most n points. So every fibre of f_i has cardinality at most n. Consequently, according to Banach [4] Exercise 17.34], the variation of f_i is bounded by $n(M - m)$, where m and M are the minimum and maximum values of f_i. According to Lebesgue [4] Theorem 17.17] the derivative of a function of bounded variation such as f_i exists almost everywhere. Select a Borel set $B \subset [a, b]$ such that $\lambda(B) = b - a$ and every f_i is differentiable at every point of B. By the Whitney Extension Theorem for C^1 functions [3] Theorem 3.1.16] there exists a set $C \subset B$ such that $\lambda(C) > 0$ and...
continuously differentiable functions $g_i : [a, b] \rightarrow \mathbb{R}$ with $g_i|C = f_i|C$ for $1 \leq i \leq n$. The functions g_i satisfy the premises of Theorem 7 in [6] so we may conclude that the set A is bounded or intersects some line in $n + 1$ points. Either way, the result is inconsistent with A being an n-point set.

References

Faculty of Sciences, Division of Mathematics and Computer Science, Vrije Universiteit, De Boelelaan 1081 A, 1081 HV Amsterdam, The Netherlands

E-mail address: kbouhjjar@cs.vu.nl

Department of Mathematics, The University of Alabama, Box 870350, Tuscaloosa, Alabama 35487-0350

E-mail address: jdijkstr@obelix.math.ua.edu

Department of Mathematics, University of North Texas, Denton, Texas 76203

E-mail address: mauldin@dynamics.math.unt.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use