ON CONTRACTIBLE \(n\)-DIMENSIONAL COMPACTA, NON-EMBEDDABLE INTO \(\mathbb{R}^{2n}\)

DUŠAN REPOVŠ AND ARKADY SKOPENKOV

(Communicated by Alan Dow)

Abstract. We present a very short proof of a well-known result, that for each \(n\) there exists a contractible \(n\)-dimensional compactum, non-embeddable into \(\mathbb{R}^{2n}\).

We present a very short proof of the following well-known result, which answers a question from [DD] and was first proved in [RSS, Corollary 1.5] (later an alternative proof appeared in [KR]).

Theorem. For each \(n \geq 1\) there exists a contractible \(n\)-dimensional compactum which does not embed into \(\mathbb{R}^{2n}\).

We shall use a construction and an idea from [RSS] (see also [CRS, §4], [RS1] and [RSSp]). However, instead of using the main result of [We], we shall apply its corollary, to the effect that for every \(n\) there exists a contractible \(n\)-polyhedron \(X\), for which there is no equivariant map \(\tilde{X} \to S^{2n-1}\). A simple proof of this corollary was presented in [Sc, p. 223]. Our proof also makes it possible to avoid referring to a (not difficult) result in [CF, Theorem 2.5] and [Hu].

Proof of Theorem. There exist a contractible \(n\)-polyhedron \(X\) and a map \(\varphi : S^{2n-1} \to X\) which does not identify antipodal points [Sc, p. 223]. (Notice that the map \(\varphi_n = p^{n,\partial(D^2)} : \partial(D^2)^n \to T^n\) also has this property, where \(T\) is the triod and \(p\) is the map defined in [KR, §2]. Indeed, \(\varphi_1\) does not identify antipodal points [KR, §2], hence neither does \(\varphi_n\).) Let \(X' = X \times (0 \cup \{\frac{1}{k}\}) \cup x \times [0,1]\), where \(x \in X\). Clearly, \(X'\) is contractible.

Suppose that there existed an embedding \(f : X' \to \mathbb{R}^{2n}\). Then we could define a map \(\psi : S^{2n-1} \to X \times X\) by \(\psi(s) = (\varphi(s), \varphi(-s))\). Since \(\varphi\) does not identify antipodal points, it would follow that \(\psi(S^{2n-1}) \cap \text{diag} X = \emptyset\). Hence the maps \(g_0 : \psi(S^{2n-1}) \to S^{2n-1}\) and \(g_k : X \times X \to S^{2n-1}\) given by

\[
g_0(x,y) = \frac{f(x,0) - f(y,0)}{|f(x,0) - f(y,0)|} \quad \text{and} \quad g_k(x,y) = \frac{f(x,0) - f(y,\frac{1}{k})}{|f(x,0) - f(y,\frac{1}{k})|}
\]
would be well-defined. The maps \(\psi, g_0 \) and \(g_k \) would be equivariant with respect to involutions on \(\psi(S^{2n-1}) \subset X \times X \) and \(S^{2n-1} \), exchanging factors and antipodal points, respectively.

Since \(\text{dist}(\psi(S^{2n-1}), \text{diag } X) > 0 \), it would follow that for sufficiently large \(k \) and any point \((x, y) \in \psi(S^{2n-1}) \), the points \(g_0(x, y) \) and \(g_k(x, y) \) would be close and hence could not be antipodal. Therefore \(g_0 \simeq_{eq} g_k|_{\psi(S^{2n-1})} \). But \(g_k|_{\psi(S^{2n-1})} \) extends to a contractible space \(X \times X \) and therefore is null-homotopic. Hence \(g_0 : \psi(S^{2n-1}) \to S^{2n-1} \) is null-homotopic. Thus the map \(g_0 \circ \psi : S^{2n-1} \to S^{2n-1} \) is equivariant and null-homotopic, which contradicts the Borsuk-Ulam Theorem. So \(X' \) cannot embed into \(\mathbb{R}^{2n} \).

By attaching \(k \)-dimensional cells to \(X' \) we can make \(X' \) locally \((k-1)\)-connected, hence our compactum can even be made to be locally \((n-1)\)-connected. This observation (due to R. J. Daverman) is interesting because the Borsuk Conjecture states that every contractible locally \(n \)-connected \(n \)-dimensional compactum embeds into \(\mathbb{R}^{2n} \).

Acknowledgements

We would like to thank R. J. Daverman and U. H. Karimov for useful discussions.

References

INSTITUTE OF MATHEMATICS, PHYSICS AND MECHANICS, UNIVERSITY OF LJUBLJANA, P.O. BOX 2964, LJUBLJANA, SLOVENIA 1001

E-mail address: dusan.repovs@fmf.uni-lj.si

DEPARTMENT OF DIFFERENTIAL GEOMETRY, FACULTY OF MECHANICS AND MATHEMATICS, MOSCOW STATE UNIVERSITY, MOSCOW, RUSSIA 119899

E-mail address: skopenko@mccme.ru

E-mail address: skopenko@aesc.msu.ru