Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Le degré de Lindelöf est $l$-invariant


Author: Ahmed Bouziad
Journal: Proc. Amer. Math. Soc. 129 (2001), 913-919
MSC (2000): Primary 54C35; Secondary 46E10
DOI: https://doi.org/10.1090/S0002-9939-00-05553-2
Published electronically: September 19, 2000
MathSciNet review: 1707509
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two Tychonoff spaces $X$ and $Y$ are said to be $l$-equivalent if $C_{p}(X)$ and $C_{p}(Y)$ are linearly homeomorphic. It is shown that if $X$ and $Y$ are $l$-equivalent, then the Lindelöf numbers of $X$ and $Y$ are the same. The proof given is a strengthening of the one given by N.V. Velichko to show that the Lindelöf property is $l$-invariant.


References [Enhancements On Off] (What's this?)

  • [1] A.V. Arhangel'skii, On some topological spaces occurring in functional analysis, Uspehi Mat. Nauk 31, N 5 (1976), 17-32. (In Russian). MR 56:16569
  • [2] A.V. Arhangel'skii, Topological Function Spaces, (Kluwer, Dordrecht, 1992). MR 92i:54022
  • [3] A.V. Arhangel'skii, $C_{p}$-theory, in: M. Husek and J. van Mill, eds., Recent Progress in General Topology (Elsevier Science Publishers B.V., 1992), 1-56. CMP 93:15
  • [4] A.V. Arhangel'skii, Embeddings in $C_{p}$-spaces, Topology Appl. 85 (1998), 9-33. MR 99c:54018
  • [5] J. Baars, Function spaces on first countable paracompact spaces, Bull. Pol. Acad. Sci. 42, 1 (1994), 29-35.
  • [6] M.M. Choban, General theorems on functional equivalence of topological spaces, Topol. Appl. 89 (1998), 223-239. CMP 99:01
  • [7] O.G. Okunev, Weak topology of an associated space, and $t$-equivalence, Math. Notes 46 (1-2) (1990), 334-338. MR 91h:46008
  • [8] O.G. Okunev, Homeomorphisms of function spaces and hereditary cardinal invariants, Topology Appl. 80 (1997), 177-188. MR 98i:54006
  • [9] E.G. Pytkeev, Tightness of spaces of continuous functions, Uspekhi Mat. Nauk 37, N 1 (1982), 157-158. (In Russian). MR 83c:54017
  • [10] V.V. Tkachuk, Some non-multiplicative properties are $l$-invariant, Comment. Math. Univ. Carolinae 38, N 1 (1997), 169-175. MR 98h:54010
  • [11] V. Valov, Function spaces, Topol. Appl. 81 (1997), 1-22. MR 98j:54030
  • [12] N.V. Velichko, The Lindelöf property is $l$-invariant, Topol. Appl. 89 (1998), 277-283. MR 99h:54025

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54C35, 46E10

Retrieve articles in all journals with MSC (2000): 54C35, 46E10


Additional Information

Ahmed Bouziad
Affiliation: Département de Mathématiques, Université de Rouen, CNRS UPRES-A 6085, 76821 Mont Saint-Aignan, France
Email: Ahmed.Bouziad@univ-rouen.fr

DOI: https://doi.org/10.1090/S0002-9939-00-05553-2
Keywords: Set-valued maps, Lindel\"{o}f degree, linear homeomorphism, function spaces
Received by editor(s): January 20, 1999
Received by editor(s) in revised form: May 14, 1999
Published electronically: September 19, 2000
Communicated by: Alan Dow
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society