Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A dichotomy theorem for subsets of the power set of the natural numbers

Author: I. Gasparis
Journal: Proc. Amer. Math. Soc. 129 (2001), 759-764
MSC (1991): Primary 46B03; Secondary 06A07, 03E02
Published electronically: August 30, 2000
MathSciNet review: 1707146
Full-text PDF

Abstract | References | Similar Articles | Additional Information


The following dichotomy is established for any pair \(\mathcal{F}\), \(\mathcal{G}\) of hereditary families of finite subsets of \(\mathbb{N}\): Given \(N\), an infinite subset of \(\mathbb{N}\), there exists \(M\) an infinite subset of \(N\) so that either \(\mathcal{G} \cap [M]^{< \infty} \subset \mathcal{F}\), or \(\mathcal{F} \cap [M]^{< \infty} \subset \mathcal{G}\), where \([M]^{< \infty}\) denotes the set of all finite subsets of \(M\).

References [Enhancements On Off] (What's this?)

  • 1. D. Alspach and S.A. Argyros, Complexity of weakly null sequences, Dissertationes Mathematicae 321 (1992), 1-44. MR 93j:46014
  • 2. G. Androulakis and E. Odell, Distorting mixed Tsirelson spaces, Israel J. Math. 109 (1999), 125-149. CMP 99:11
  • 3. S.A. Argyros and I. Deliyanni, Examples of asymptotic \(\ell_1\) Banach spaces, Trans. Amer. Math. Soc. 349 (1997), 973-995. MR 97f:46021
  • 4. S.A. Argyros, S. Mercourakis and A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, Israel J. Math. 107 (1998), 157-193. CMP 99:05
  • 5. S.A. Argyros and V. Felouzis, Interpolating hereditarily indecomposable Banach spaces, (preprint).
  • 6. S.A. Argyros and I. Gasparis, Unconditional structures of weakly null sequences, (preprint).
  • 7. E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163-165. MR 50:1887
  • 8. F. Galvin and K. Prikry, Borel sets and Ramsey's theorem, J. Symbolic Logic 38 (1973), 193-198. MR 49:2399
  • 9. V. Farmaki, Ramsey dichotomies with ordinal index, (preprint)
  • 10. R. Judd, A dichotomy on Schreier sets, Studia Math. 132 (1999), 245-256. CMP 99:07
  • 11. P. Kyriakouli, On hereditary families of finite subsets of positive integers, (preprint).
  • 12. C. St. J. A. Nash-Williams, On well quasi-ordering transfinite sequences, Proc. Camb. Phil. Soc. 61 (1965), 33-39. MR 30:3850
  • 13. S. Mazurkiewicz and W. Sierpinski, Contribution a la topologie des ensembles denomrables, Fund. Math. 3 (1920), 17-27.
  • 14. E. Odell, Applications of Ramsey theorems to Banach space theory, Notes in Banach spaces, (H.E. Lacey ed.), Univ. of Texas Press (1980), 379-404. MR 83g:46018
  • 15. E. Odell and Th. Schlumprecht, A problem on spreading models, J. Funct. Anal. 153 (1998), 249-261. MR 99c:46006
  • 16. E. Odell, N. Tomczak-Jaegermann, R. Wagner, Proximity to \(\ell_1\) and Distortion in asymptotic \(\ell_1\) spaces, J. Funct. Anal. 150 (1997), no. 1, 101-145. CMP 98:02
  • 17. J. Schreier, Ein Gegenbeispiel zur theorie der schwachen konvergenz, Studia Math. 2 (1930), 58-62.
  • 18. J. Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970), 60-64. MR 48:10807
  • 19. A. Tsarpalias, A note on Ramsey property, Proc. A.M.S. 127 (1999), no. 2, 583-587. MR 99c:04005

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46B03, 06A07, 03E02

Retrieve articles in all journals with MSC (1991): 46B03, 06A07, 03E02

Additional Information

I. Gasparis
Affiliation: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078

Keywords: Ramsey theory, Schreier sets, dichotomy
Received by editor(s): February 19, 1999
Received by editor(s) in revised form: May 5, 1999
Published electronically: August 30, 2000
Communicated by: Dale Alspach
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society