Ohkawa's theorem: There is a set of Bousfield classes
Authors:
William G. Dwyer and John H. Palmieri
Journal:
Proc. Amer. Math. Soc. 129 (2001), 881886
MSC (2000):
Primary 55P42, 55P60, 55U35
Published electronically:
September 20, 2000
MathSciNet review:
1712921
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We give a simple proof of Ohkawa's theorem, that there is a set of Bousfield classes. The proof leads us to consider the partially ordered set of Ohkawa classes, especially as it compares to the partially ordered set of Bousfield classes.
 1.
A.
K. Bousfield, The Boolean algebra of spectra, Comment. Math.
Helv. 54 (1979), no. 3, 368–377. MR 543337
(81a:55015), http://dx.doi.org/10.1007/BF02566281
 2.
A.
K. Bousfield, The localization of spectra with respect to
homology, Topology 18 (1979), no. 4,
257–281. MR
551009 (80m:55006), http://dx.doi.org/10.1016/00409383(79)900181
 3.
M. Hovey and J. H. Palmieri, The structure of the Bousfield lattice, Homotopy invariant algebraic structures (J.P. Meyer, J. Morava, and W. S. Wilson, eds.), Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999.
 4.
Mark
Hovey, John
H. Palmieri, and Neil
P. Strickland, Axiomatic stable homotopy theory, Mem. Amer.
Math. Soc. 128 (1997), no. 610, x+114. MR 1388895
(98a:55017), http://dx.doi.org/10.1090/memo/0610
 5.
Tetsusuke
Ohkawa, The injective hull of homotopy types with respect to
generalized homology functors, Hiroshima Math. J. 19
(1989), no. 3, 631–639. MR 1035147
(90j:55013)
 1.
 A. K. Bousfield, The Boolean algebra of spectra, Comment. Math. Helv. 54 (1979), no. 3, 368377. MR 81a:55015
 2.
 , The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257281. MR 80m:55006
 3.
 M. Hovey and J. H. Palmieri, The structure of the Bousfield lattice, Homotopy invariant algebraic structures (J.P. Meyer, J. Morava, and W. S. Wilson, eds.), Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999.
 4.
 M. Hovey, J. H. Palmieri, and N. P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997), no. 610, x+114. MR 98a:55017
 5.
 T. Ohkawa, The injective hull of homotopy types with respect to generalized homology functors, Hiroshima Math. J. 19 (1989), no. 3, 631639. MR 90j:55013
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
55P42,
55P60,
55U35
Retrieve articles in all journals
with MSC (2000):
55P42,
55P60,
55U35
Additional Information
William G. Dwyer
Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Email:
dwyer.1@nd.edu
John H. Palmieri
Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Address at time of publication:
Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 981954350
Email:
palmieri@member.ams.org
DOI:
http://dx.doi.org/10.1090/S0002993900056690
PII:
S 00029939(00)056690
Received by editor(s):
May 12, 1999
Published electronically:
September 20, 2000
Additional Notes:
This work was partially supported by the National Science Foundation, Grant DMS9802386.
Communicated by:
Ralph Cohen
Article copyright:
© Copyright 2000
American Mathematical Society
