Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Decay of global solutions, stability and blowup for a reaction-diffusion problem with free boundary

Authors: Hamid Ghidouche, Philippe Souplet and Domingo Tarzia
Journal: Proc. Amer. Math. Soc. 129 (2001), 781-792
MSC (2000): Primary 35K55, 35R35, 80A22, 35B35, 35B40
Published electronically: September 20, 2000
MathSciNet review: 1802001
Full-text PDF

Abstract | References | Similar Articles | Additional Information


We consider a one-phase Stefan problem for the heat equation with a nonlinear reaction term. We first exhibit an energy condition, involving the initial data, under which the solution blows up in finite time in $L^\infty$ norm. We next prove that all global solutions are bounded and decay uniformly to 0, and that either: (i) the free boundary converges to a finite limit and the solution decays at an exponential rate, or (ii) the free boundary grows up to infinity and the decay rate is at most polynomial. Finally, we show that small data solutions behave like (i).

References [Enhancements On Off] (What's this?)

  • [A] T. Aiki, Behavior of free boundaries of blow-up solutions to one-phase Stefan problems, Nonlinear Anal., 26 (1996), 707-723. MR 96k:35192
  • [B] J. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quarterly J. Math. Oxford, 28 (1977), 473-486. MR 57:13150
  • [CL] T. Cazenave, P. L. Lions, Solutions globales d'équations de la chaleur semi-linéaires, Comm. Partial Diff. Eq., 9, 10 (1984), 955-978. MR 87k:35125
  • [FP] A. Fasano, M. Primicerio, Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl., 72 (1979), 247-273. MR 82j:35091
  • [Fi] M. Fila, Boundedness of global solutions of nonlinear diffusion equations, J. Diff. Equations, 98 (1992), 226-240. MR 93g:35065
  • [Fr] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, 1964. MR 31:6062
  • [Fu] H. Fujita, On the blowing-up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, Sect. I, 13 (1966), 109-124. MR 35:5761
  • [GS] B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Diff. Equations, 6 (1981), 883-901. MR 82h:35033
  • [G] Y. Giga, A bound for global solutions of semilinear heat equations, Comm. Math. Phys., 103 (1986), 415-421. MR 87j:35187
  • [HW] A. Haraux, F. B. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J., 31 (1982), 167-189. MR 83h:35063
  • [H] K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad., 49 (1973), 503-505. MR 49:3333
  • [IK] H. Imai, H. Kawarada, Numerical analysis of a free boundary problem involving blow-up phenomena, Proc. Joint Symp. Appl. Math. (1987), 277-280.
  • [K] O. Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. Henri Poincaré, Analyse non linéaire, 4, 5 (1987), 423-452. MR 89b:35013
  • [LSU] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uralceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, A.M.S., Providence, 1968.
  • [Le] H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$, Arch. Rational Mech. Anal., 51 (1973), 371-386. MR 50:714
  • [M] J. Matos, Phénomène d'explosion totale pour l'équation de la chaleur avec non-linéarité de type puissance, C. R. Acad. Sc. Paris, 328, Série I (1999), 297-302. MR 99k:35100
  • [NST] W.-M. Ni, P. Sacks, J. Tavantzis, On the asymptotics of certain quasilinear parabolic equations, J. Diff. Equations, 54 (1984), 97-120. MR 87j:35057
  • [Q] P. Quittner, Boundedness of trajectories of parabolic equations and stationary solutions via dynamical methods, Diff. Int. Equations, 7 (1994), 1547-1556. MR 95b:35117
  • [RT] R. Ricci, D. A. Tarzia, Asymptotic behavior of the solutions of the dead-core problem, Nonlinear Anal., 13 (1989), 405-411. MR 90e:35025
  • [S1] Ph. Souplet, Sur l'asymptotique des solutions globales pour une équation de la chaleur semi-linéaire dans des domaines non bornés, C. R. Acad. Sc. Paris, 323, Série I (1996), 877-882. MR 97k:35017
  • [S2] Ph. Souplet, Geometry of unbounded domains, Poincaré inequalities, and stability in semilinear parabolic equations, Commun. Part. Diff. Equations, 24 (1999), 951-973. MR 2000a:35114
  • [W] F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29-40. MR 82g:35059

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35K55, 35R35, 80A22, 35B35, 35B40

Retrieve articles in all journals with MSC (2000): 35K55, 35R35, 80A22, 35B35, 35B40

Additional Information

Hamid Ghidouche
Affiliation: Laboratoire Analyse, Géométrie et Applications, UMR CNRS 7539, Institute Galilée, Université Paris Nord, 93430 Villetaneuse, France

Philippe Souplet
Affiliation: Département de Mathématiques, Université de Picardie, INSSET, 02109 St-Quentin, France and Laboratoire de Mathématiques Appliquées, UMR CNRS 7641, Université de Versailles 45 avenue des Etats-Unis, 78302 Versailles, France

Domingo Tarzia
Affiliation: Departamento de Matemática, FCE, Universidad Austral, Paraguay 1950, 2000, Rosario, Argentina

Keywords: Nonlinear reaction-diffusion equation, free boundary condition, Stefan problem, global existence, boundedness of solutions, decay, stability, finite time blow up.
Received by editor(s): May 11, 1999
Published electronically: September 20, 2000
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society