Compact operators on the Bergman space of multiply-connected domains

Author:
Roberto Raimondo

Journal:
Proc. Amer. Math. Soc. **129** (2001), 739-747

MSC (2000):
Primary 47B35

DOI:
https://doi.org/10.1090/S0002-9939-00-05718-X

Published electronically:
September 19, 2000

MathSciNet review:
1801999

Full-text PDF

Abstract | References | Similar Articles | Additional Information

If is a smoothly bounded multiply-connected domain in the complex plane and where we show that is compact if and only if its Berezin transform vanishes at the boundary.

**[1]**J. Arazy,*Membership of Hankel Operators on Planar Domains in Unitary Ideals,*Analysis at Urbana, vol.1, London Math. Soc. Lecture Notes Ser. 137, Cambridge University Press, 1989, 1-40. MR**90g:47048****[2]**S. Axler and D. Zheng,*Compact Operators via the Berezin Transform*, Indiana Univ. Math. J.**47**(1998), 387-400. MR**99i:47045****[3]**F. A. Berezin,*Covariant and Contravariant Symbols of Operators,*Math. USSR Izv.**36**(1972), 1117-1151. MR**50:2996****[4]**V. Bergman,*The Kernel Function and the Conformal Mapping,*AMS Math. Surveys 1950.**[5]**R. Douglas,*Banach Algebra Techniques in Operator Theory,*Academic Press, 1972. MR**50:14335****[6]**G. M. Goluzin,*Geometric Theory of Functions of a Complex Variable,*Trans. of Math. Monographs**26**Providence, R.I., 1969. MR**40:308****[7]**L. Huiping,*Hankel Operators on the Bergman Space of Multiply-Connected Domains,*J. Oper. Theory**28**(1992), 321-335. MR**95d:47029****[8]**N. Kerzman,*The Bergman Kernel Function, Differentiability at the Boundary,*Math. Ann.**195**(1972), 149-158. MR**45:3762****[9]**B. Russo,*On the Hausdorff-Young Theorem for Integral Operators,*Pacific J. of Math.**68**(1977), 241-252. MR**58:17974**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47B35

Retrieve articles in all journals with MSC (2000): 47B35

Additional Information

**Roberto Raimondo**

Affiliation:
Department of Economics, University of California at Berkeley, Evans Hall, Berkeley, California 94720

Email:
raimondo@econ.berkeley.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05718-X

Received by editor(s):
May 4, 1999

Published electronically:
September 19, 2000

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2000
American Mathematical Society