Compact operators on the Bergman space of multiply-connected domains

Author:
Roberto Raimondo

Journal:
Proc. Amer. Math. Soc. **129** (2001), 739-747

MSC (2000):
Primary 47B35

Published electronically:
September 19, 2000

MathSciNet review:
1801999

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

If is a smoothly bounded multiply-connected domain in the complex plane and where we show that is compact if and only if its Berezin transform vanishes at the boundary.

**[1]**Jonathan Arazy,*Membership of Hankel operators on planar domains in unitary ideals*, Analysis at Urbana, Vol. I (Urbana, IL, 1986–1987) London Math. Soc. Lecture Note Ser., vol. 137, Cambridge Univ. Press, Cambridge, 1989, pp. 1–40. MR**1009167****[2]**Sheldon Axler and Dechao Zheng,*Compact operators via the Berezin transform*, Indiana Univ. Math. J.**47**(1998), no. 2, 387–400. MR**1647896**, 10.1512/iumj.1998.47.1407**[3]**F. A. Berezin,*Covariant and contravariant symbols of operators*, Izv. Akad. Nauk SSSR Ser. Mat.**36**(1972), 1134–1167 (Russian). MR**0350504****[4]**V. Bergman,*The Kernel Function and the Conformal Mapping,*AMS Math. Surveys 1950.**[5]**Ronald G. Douglas,*Banach algebra techniques in operator theory*, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 49. MR**0361893****[6]**G. M. Goluzin,*Geometric theory of functions of a complex variable*, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR**0247039****[7]**Huiping Li,*Hankel operators on the Bergman space of multiply connected domains*, J. Operator Theory**28**(1992), no. 2, 321–335. MR**1273049****[8]**Norberto Kerzman,*The Bergman kernel function. Differentiability at the boundary*, Math. Ann.**195**(1972), 149–158. MR**0294694****[9]**Bernard Russo,*On the Hausdorff-Young theorem for integral operators*, Pacific J. Math.**68**(1977), no. 1, 241–253. MR**0500308**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47B35

Retrieve articles in all journals with MSC (2000): 47B35

Additional Information

**Roberto Raimondo**

Affiliation:
Department of Economics, University of California at Berkeley, Evans Hall, Berkeley, California 94720

Email:
raimondo@econ.berkeley.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05718-X

Received by editor(s):
May 4, 1999

Published electronically:
September 19, 2000

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2000
American Mathematical Society