Semidirect sum of groups in which endomorphisms are generated by inner automorphisms

Author:
Feng-Kuo Huang

Journal:
Proc. Amer. Math. Soc. **129** (2001), 629-637

MSC (2000):
Primary 16Y30; Secondary 20E36

DOI:
https://doi.org/10.1090/S0002-9939-00-05738-5

Published electronically:
September 20, 2000

MathSciNet review:
1801993

Full-text PDF

Abstract | References | Similar Articles | Additional Information

An I-E group is a group in which every endomorphism is finitely generated by its inner automorphisms. In this paper a characterization for a semidirect sum of I-E groups to be an I-E group is obtained and some well-known results are generalized. We then use this characterization to prove that a semidirect sum of finite I-E groups will again be an I-E group if the normal semidirect summand is unique and fully invariant. Conditions for a group to be an I-E group are also given.

**1.**G. Birkenmeier, H. Heatherly and E. Lee,*Prime ideals and prime radicals in near-rings*, Mh. Math.**117**(1994), 179-197. MR**95e:16045****2.**-,*Completely prime ideals and radicals in near-rings*, Proc. Near-rings and Near-fields conference, Fredericton, 1993, (Y. Fong et al.eds), Kluwer Acad. Publ. (1995), 63-73. MR**96k:16082****3.**F. Castagna,*Sums of automorphisms of a primary group*, Pacific J. Math.**27**(1968), 463-473. MR**38:5920****4.**Y. Fong and K. Kaarli,*Unary polynomials on a class of groups*, Acta Sci. Math. (Szeged)**61**(1995), 139-154. MR**97b:16038****5.**Y. Fong and J. D. P. Meldrum,*The endomorphism near-rings of the symmetric groups of degree at least five*, J. Austral. Math. Soc.**30A**(1980), 37-49. MR**81j:16043****6.**-,*The endomorphism near-ring of the symmetric group of degree four*, Tamkang J. Math.**12**(1981), 193-203. MR**84a:16066****7.**H. Freedman,*On endomorphisms of primary abelian groups*, J. London Math. Soc.**43**(1968), 305-307. MR**37:1471****8.**A. Frölich,*The near-ring generated by the inner automorphisms of a finite simple group*, J. London Math. Soc.**33**(1958), 95-107.**9.**L. Fuchs,*Recent results and problems on abelian groups*, Topics in abelian groups, Scott, Foresman and Company, Glenview, 1963. MR**30:149****10.**C. G. Lyons and G. L. Peterson,*Semidirect product of I-E groups*, Proc. Amer. Math. Soc.**123**(1995), 2353-2356. MR**95j:16054****11.**C. G. Lyons and J. J. Malone,*Endomorphism near-rings*, Proc. Edinburgh Math. Soc.**17**(1970), 71-78. MR**42:4598****12.**-,*Finite dihedral groups and d. g. near-rings I*, Compositio Math.**24**(1972), 305-312. MR**46:7321****13.**-,*Finite dihedral groups and d. g. near-rings II*, Compositio Math.**26**(1973), 249-259. MR**48:8574****14.**C. G. Lyons and G. Mason,*Endomorphism near-rings of dicyclic and generalized dihedral groups*, Proc. Roy. Irish Acad.**91A**(1991), 99-111. MR**93a:16038****15.**J. J. Malone,*Generalized quaternion groups and distributively generated near-ring*, Proc. Edinburgh Math. Soc.**18**(1973), 235-238. MR**47:5059****16.**-,*Endomorphism near-rings through the ages*, Proc. Near-rings and Near-fields conference, Fredericton, 1993, (Y. Fong et al.eds), Kluwer Acad. Publ. (1995), 31-43. MR**96i:16072****17.**J. J. Malone and G. Mason,*ZS-Metacyclic groups and their endomorphism near-rings*, Mh. Math.**118**(1994), 249-265. MR**95j:16055****18.**J. D. P. Meldrum,*Near-rings and their links with groups*, Pitman, London, Research Notes in Math., 134(1985). MR**88a:16068****19.**G. L. Peterson,*Finite metacyclic I-E and I-A groups*, Comm. Algebra**23**(1995), 4563-4585. MR**97h:20029****20.**R. S. Pierce,*Homomorphisms of primary abelian groups*, Topics in abelian groups, Scott, Foresman and Company, Glenview, 1963. MR**31:1299****21.**D. J. S. Robinson,*A course in the theory of groups*, Springer-Verlag, New York, 1996. MR**96f:20001****22.**G. Saad, M. J. Thomsen and S. A. Syskin,*Endomorphism nearrings on finite groups, a report*, Proc. Near-rings and Near-fields conference, Fredericton, 1993, (Y. Fong et al.eds), Kluwer Acad. Publ. (1995), 227-238. MR**96k:16087****23.**R. Stringall,*Endomorphism rings of abelian groups generated by automorphism groups*, Acta Math. Acad. Sci. Hungar.**18**(1967), 401 - 404. MR**35:5509****24.**S. A. Syskin,*On annihilators in endomorphism nearrings*, Comm. Algebra**22**(1994), 5709-5714. MR**95j:16056****25.**-,*Projection endomorphisms on finite groups*, Algebra and Logic**34**(1995), 306-310. MR**97d:20021**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
16Y30,
20E36

Retrieve articles in all journals with MSC (2000): 16Y30, 20E36

Additional Information

**Feng-Kuo Huang**

Affiliation:
Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504–1010

Email:
fxh2858@usl.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05738-5

Keywords:
Endomorphism near-ring,
I--E group

Received by editor(s):
May 7, 1999

Published electronically:
September 20, 2000

Communicated by:
Stephen D. Smith

Article copyright:
© Copyright 2000
American Mathematical Society