Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy


Authors: Howard A. Levine and Grozdena Todorova
Journal: Proc. Amer. Math. Soc. 129 (2001), 793-805
MSC (1991): Primary 35L15, 35Q72
DOI: https://doi.org/10.1090/S0002-9939-00-05743-9
Published electronically: September 19, 2000
MathSciNet review: 1792187
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

In this paper we consider the long time behavior of solutions of the initial value problem for semi-linear wave equations of the form

\begin{equation*}u_{tt}+ a\vert u_t\vert^{m-1}u_t - \Delta u = b\vert u\vert^{p-1}u\qquad \quad \text{in} [0,\infty )\times R^n. \qquad \qquad \end{equation*}

Here $a,b>0.$

We prove that if $p>m \ge 1,$ then for any $\lambda>0$ there are choices of initial data from the energy space with initial energy $\mathcal{E}(0)=\lambda^2,$ such that the solution blows up in finite time. If we replace $b\vert u\vert^{p-1}u $ by $b\vert u\vert^{p-1}u -q(x)^2u$, where $q(x)$ is a sufficiently slowly decreasing function, an analogous result holds.


References [Enhancements On Off] (What's this?)

  • 1. BALL, J., Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford (2) 28 (1977), 473-486. MR 57:13150
  • 2. GEORGIEV, V. AND G. TODOROVA, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Diff. Eqs. 109 (1994), 295-308. MR 95b:35141
  • 3. GLASSEY, R. T., Blow-up theorems for nonlinear wave equations, Math. Z. 132 (1973), 183-203. MR 49:5549
  • 4. Ikehata, R., Some remarks on the wave equations with nonlinear damping and source terms Nonl. Anal. T. M. A (to appear). MR 97i:35117
  • 5. KAWARADA, K., On solutions of nonlinear wave equations, J. Phys. Soc. Jap. (1971), 280-282.
  • 6. KELLER, J. B., On solutions of nonlinear wave equations, Comm. Pure Appl. Math 10 (1957), 523-530. MR 20:3371
  • 7. KNOPS, R. J., Levine, H. A. and Payne L. E., Nonexistence, instability and growth theorems for solutions to an abstract nonlinear equation with applications to elastodynamics, Arch. Rational Mech. Anal. 55 (1974), 52-72. MR 51:1093
  • 8. LEVINE, H.A., Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{tt} = -Au +F(u)$, Trans. Amer. Math. Soc. 192 (1974), 1-21. MR 49:9436
  • 9. LEVINE, H.A., Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal. 5 (1974), 138-146. MR 53:3525
  • 10. LEVINE, H.A., Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded Fourier coefficients, Math. Ann. 214 (1975), 205-220. MR 52:6200
  • 11. LEVINE, H.A., PARK, S. R. AND SERRIN, J., Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation, JMAA 228 (1998), 181-205. MR 99k:35124
  • 12. LEVINE, H.A., PUCCI, P. AND SERRIN, J., Some remarks on global nonexistence for nonautonomous abstract evolution equations, Contemporary Math. 208 (1997), 253-263. MR 98j:34124
  • 13. LEVINE, H.A. AND SERRIN, J., A global nonexistence theorem for quasilinear evolution equations with dissipation, Arch. Rational. Mech. Anal. 137 (1997), 341-361. MR 99b:34110
  • 14. NAKAO, M. AND ONO, K., Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, Math. Z. 214 (1993), 325 - 342. MR 94h:35167
  • 15. OHTA, M., Remarks on blow up of solutions for nonlinear evolution equations of second order, (to appear). MR 99m:35167
  • 16. ONO, K. On global solutions and blowup solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. and Appl. 216 (1997), 321-342. MR 99e:35219
  • 17. PAYNE, L. E. AND SATTINGER, D., Saddle points and instability of nonlinear hyperbolic equations, Israel Math. J. 22 (1981), 273-303. MR 53:6112
  • 18. PUCCI, P. AND SERRIN, J. Global nonexistence for abstract evolution equations with positive initial energy, JDE 109 (1998)). MR 2000a:34119
  • 19. STRAUGHAN, B., Further global nonexistence theorems for abstract nonlinear wave equations Proc. AMS 48 (2)(1975) 381-390. MR 51:1518
  • 20. STRAUSS, W., Nonlinear Wave Equations CBMS Regional Conference Series in Mathematics, Am. Math. Soc. 73(1989). MR 91g:35002
  • 21. STRAUSS, W., The Energy Method in Nonlinear Partial Differential Equations, Notas De Matematics #47, Istit. di Mat. Conselho Nacional de Pesquisas, Rio de Janeiro 1969. MR 42:8051
  • 22. TSUTSUMI, H., On solutions of semilinear differential equations in a Hilbert space, Math. Japonicea 17 (1972), 173-193.
  • 23. TODOROVA, G., The Cauchy problem for nonlinear wave equations with nonlinear damping and source terms J. Nonl. Anal. TMA 41 7-8 (2000), 891-905.
  • 24. TODOROVA, G., The Cauchy problem for nonlinear wave equations with nonlinear damping and source terms C. R. Acad. Sci. Paris 326 Série I (1998), 191-196. MR 99e:35154
  • 25. TODOROVA, G., Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms C. R. Acad. Sci. Paris 328 Série I (1999), 117-122. MR 99j:35144
  • 26. TODOROVA, G., Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms JMAA 239 (1999), 213-226. CMP 2000:04
  • 27. VITILLARO, E., Global nonexistence theorems for a class of evolution equations with dissipation Arch. Rat. Mech. Anal., 149, 2(1999), 155-182. MR 2000:04

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35L15, 35Q72

Retrieve articles in all journals with MSC (1991): 35L15, 35Q72


Additional Information

Howard A. Levine
Affiliation: Department of Mathematics, Iowa State University, Ames, Iowa 50011
Email: halevine@iastate.edu

Grozdena Todorova
Affiliation: Institute of Mathematics, Bulgarian Academy of Sciences, Boul. Acad. Bonchev bl.8, Sofia 1113, Bulgaria
Address at time of publication: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Email: grozdena@bas.bg, todorova@math.umm.edu

DOI: https://doi.org/10.1090/S0002-9939-00-05743-9
Received by editor(s): May 11, 1999
Published electronically: September 19, 2000
Additional Notes: The first author was supported in part by NATO grant CRG-95120. The second author was supported by the Institute for Theoretical and Applied Physics at Iowa State University.
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society