Martin's Axiom does not imply perfectly normal non-archimedean spaces are metrizable

Author:
Yuan-Qing Qiao

Journal:
Proc. Amer. Math. Soc. **129** (2001), 1179-1188

MSC (1991):
Primary 03E05, 54E35, 54B05; Secondary 54G99, 54A35, 03E45

DOI:
https://doi.org/10.1090/S0002-9939-00-04940-6

Published electronically:
November 15, 2000

MathSciNet review:
1610777

Full-text PDF

Abstract | References | Similar Articles | Additional Information

In this paper we prove that in various models of Martin's Axiom there are perfectly normal, non-metrizable non-archimedean spaces of .

**[B]**J. E. Baumgartner,*Iterated Forcing*, London Mathematical Society Lecture Note Series 87, Cambridge Univ. Press, 1978. MR**87c:03099****[D]**K. J. Devlin,*Constructibility*, Springer-Verlag, 1984. MR**85k:03001****[E]**R. Engelking,*General Topology*, Helderman Verlag, Berlin, 1989. MR**91c:54001****[K]**K. Kunen,*Set Theory*, North Holland, 1980. MR**82f:03001****[N]**P. Nyikos,*A survey of Zero-Dimensional Spaces*, Topology (Proc. Nineth Annual Spring Conf., Memphis State Univ., Memphis, Tenn., 1975), pp. 87-114. MR**56:1245****[NR]**P. J. Nyikos and H. C. Reichel,*On the structure of zero-dimensional spaces*, Indag. Math.**37**(1975), 120-136. MR**51:1779****[P]**S. Purisch,*The orderability of nonarchimedean spaces*, Top. and its Appl.**16**(1983), 273-277. MR**85f:54063****[Q]**Y. Q. Qiao,*On Non-archimedean Spaces*, Thesis, Univ. of Toronto, 1992.**[QT]**Y. Q. Qiao and F. D. Tall,*Perfectly normal non-archimedean spaces in Mitchell models*, Top. Proc.**18**(1993), 231-243. MR**96g:54033****[QT]**Y. Q. Qiao and F. D. Tall,*Perfectly normal non-metrizable non-archimedean spaces are generalized Souslin lines*, Proc. Amer. Math. Soc. (to appear).**[S]**S. Shelah,*Proper Forcing*, Springer-Verlag Lecture Notes in Mathematics, 940, 1982. MR**84h:03002****[ST]**S. Shelah and S. B. Todorcevic,*A note on the small Baire spaces*, Canad. J. Math.**38**no. 3 (1986), 659-665. MR**88c:54005****[T]**S. B. Todorcevic,*Some consequences of*, Topology and its Appl.**12**(1981), 203-220. MR**83b:03060****[T]**S. B. Todorcevic,*Trees, subtrees and order types*, Ann. Math. Logic**20**(1981), 233-268. MR**82m:03062**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
03E05,
54E35,
54B05,
54G99,
54A35,
03E45

Retrieve articles in all journals with MSC (1991): 03E05, 54E35, 54B05, 54G99, 54A35, 03E45

Additional Information

**Yuan-Qing Qiao**

Affiliation:
Department of Mathematics, University of Toronto, Toronto, Canada M5S 3G3

DOI:
https://doi.org/10.1090/S0002-9939-00-04940-6

Keywords:
Non-archmedean,
perfect,
metrizable,
tree base,
Martin's Axiom,
forcing special tree,
$\diamondsuit$,
$\square$

Received by editor(s):
December 10, 1992

Received by editor(s) in revised form:
January 29, 1998

Published electronically:
November 15, 2000

Additional Notes:
The author’s research was supported by NSERC Grant A-7354

Communicated by:
Andreas Blass

Article copyright:
© Copyright 2000
American Mathematical Society