Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Non-linearity of the pluricomplex Green function


Author: Frank Wikström
Journal: Proc. Amer. Math. Soc. 129 (2001), 1051-1056
MSC (2000): Primary 32U35; Secondary 32F45
Published electronically: October 10, 2000
MathSciNet review: 1712869
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

We consider the pluricomplex Green function with multiple poles as introduced by Lelong. We give a partial solution to a question concerning the set where the multipole Green function coincides with the sum of the corresponding single pole Green functions.


References [Enhancements On Off] (What's this?)

  • 1. M. Carlehed, Some properties of the pluricomplex Green function and potentials, Research reports No 14, 1995. Dept. of Mathematics, Umeå University.
  • 2. D. Coman, The pluricomplex Green function with two poles of the unit ball of $\mathbb{C} ^n$, Pacific J. Math. (to appear).
  • 3. Jean-Pierre Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), no. 4, 519–564 (French). MR 881709, 10.1007/BF01161920
  • 4. Armen Edigarian, On definitions of the pluricomplex Green function, Ann. Polon. Math. 67 (1997), no. 3, 233–246. MR 1482905
  • 5. Armen Edigarian and Włodzimierz Zwonek, Invariance of the pluricomplex Green function under proper mappings with applications, Complex Variables Theory Appl. 35 (1998), no. 4, 367–380. MR 1635283
  • 6. M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), no. 2, 231–240 (English, with French summary). MR 820321
  • 7. Finnur Lárusson and Ragnar Sigurdsson, Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math. 501 (1998), 1–39. MR 1637837
  • 8. Pierre Lelong, Fonction de Green pluricomplexe et lemmes de Schwarz dans les espaces de Banach, J. Math. Pures Appl. (9) 68 (1989), no. 3, 319–347 (French). MR 1025907
  • 9. László Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474 (French, with English summary). MR 660145

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32U35, 32F45

Retrieve articles in all journals with MSC (2000): 32U35, 32F45


Additional Information

Frank Wikström
Affiliation: Department of Mathematics, Umeå University, S-901 87 Umeå, Sweden
Email: Frank.Wikstrom@math.umu.se

DOI: https://doi.org/10.1090/S0002-9939-00-05683-5
Keywords: Pluricomplex Green function with multiple poles, analytic discs, invariant distances
Received by editor(s): June 25, 1999
Published electronically: October 10, 2000
Communicated by: Steven R. Bell
Article copyright: © Copyright 2000 American Mathematical Society