Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Non-linearity of the pluricomplex Green function


Author: Frank Wikström
Journal: Proc. Amer. Math. Soc. 129 (2001), 1051-1056
MSC (2000): Primary 32U35; Secondary 32F45
DOI: https://doi.org/10.1090/S0002-9939-00-05683-5
Published electronically: October 10, 2000
MathSciNet review: 1712869
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We consider the pluricomplex Green function with multiple poles as introduced by Lelong. We give a partial solution to a question concerning the set where the multipole Green function coincides with the sum of the corresponding single pole Green functions.


References [Enhancements On Off] (What's this?)

  • 1. M. Carlehed, Some properties of the pluricomplex Green function and potentials, Research reports No 14, 1995. Dept. of Mathematics, Umeå University.
  • 2. D. Coman, The pluricomplex Green function with two poles of the unit ball of $\mathbb{C} ^n$, Pacific J. Math. (to appear).
  • 3. J. P. Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), 519-564. MR 88g:32034
  • 4. A. Edigarian, On definitions of the pluricomplex Green function, Ann. Polon. Math. 67 (1997), no. 3, 233-246. MR 99f:32039
  • 5. A. Edigarian and W. Zwonek, Invariance of the pluricomplex Green function under proper mappings with applications, Complex Variables Theory Appl. 35 (1998), 367-380. MR 99d:32017
  • 6. M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), 231-240. MR 87d:32032
  • 7. F. Lárusson and R. Sigurdsson, Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math. 501 (1998), 1-39. MR 99e:32020
  • 8. P. Lelong, Fonction de Green pluricomplexe et lemme de Schwarz dans les espaces de Banach, J. Math. Pures Appl. 68 (1989), 319-347. MR 91c:46065
  • 9. L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474. MR 84d:32036

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32U35, 32F45

Retrieve articles in all journals with MSC (2000): 32U35, 32F45


Additional Information

Frank Wikström
Affiliation: Department of Mathematics, Umeå University, S-901 87 Umeå, Sweden
Email: Frank.Wikstrom@math.umu.se

DOI: https://doi.org/10.1090/S0002-9939-00-05683-5
Keywords: Pluricomplex Green function with multiple poles, analytic discs, invariant distances
Received by editor(s): June 25, 1999
Published electronically: October 10, 2000
Communicated by: Steven R. Bell
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society