Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A class of unitarily invariant norms on $B(H)$


Authors: Jor-Ting Chan, Chi-Kwong Li and Charlies C. N. Tu
Journal: Proc. Amer. Math. Soc. 129 (2001), 1065-1076
MSC (1991): Primary 47D25
DOI: https://doi.org/10.1090/S0002-9939-00-05692-6
Published electronically: October 10, 2000
MathSciNet review: 1814144
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $H$ be a complex Hilbert space and let $B(H)$ be the algebra of all bounded linear operators on $H$. For $c=(c_{1},\dots ,c_{k})$, where $c_{1}\ge \cdots \ge c_{k}>0$ and $p\ge 1$, define the $(c,p)$-norm of $A\in B(H)$ by

\begin{displaymath}\Vert A\Vert _{c,p}=\left (\sum _{i=1}^{k} c_{i} s_{i}(A)^{p}\right )^{\frac{1}{p}} , \end{displaymath}

where $s_{i}(A)$ denotes the $i$th $s$-numbers of $A$. In this paper we study some basic properties of this norm and give a characterization of the extreme points of its closed unit ball. Using these results, we obtain a description of the corresponding isometric isomorphisms on $B(H)$.


References [Enhancements On Off] (What's this?)

  • 1. J. Arazy, The isometries of $C_{p}$, Israel J. Math. 22 (1975), 247-256. MR 58:23760
  • 2. R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997. MR 98i:15003
  • 3. J.B. Conway, A Course in Functional Analysis, 2nd ed., Springer-Verlag, New York, 1990. MR 91e:46001
  • 4. K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operator, Proc. Nat. Acad. Sci. USA 37 (1951), 760-766. MR 13:661e
  • 5. K. Fan and A.J. Hoffman, Some metric inequalities in the spaces of matrices, Proc. Amer. Math. Soc. 6 (1955), 111-116. MR 16:784j
  • 6. L. Fialkow and R. Loebl, Elementary mappings into ideals of operators, Illinois J. Math. 28 (1984), 555-578. MR 86g:47054
  • 7. I.C. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monographs, Vol. 18, Amer. Math. Soc., Providence, R.I., 1969. MR 39:7447
  • 8. R. Grone and M. Marcus, Isometries of matrix algebras, J. Algebra 47 (1977), 180-189. MR 56:3039
  • 9. R. Grzaslewicz, Exposed points of the unit ball of $\mathcal{L}(H)$, Math. Z. 193 (1986), 595-596. MR 88e:47084
  • 10. R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. MR 87e:15001
  • 11. R.V. Kadison, Isometries of operator algebras, Ann. of Math. (2) 54 (1951), 325-338. MR 13:256a
  • 12. C.K. Li, Some aspects of the theory of norms, Linear Algebra Appl. 219 (1995), 93-110.
  • 13. C.K. Li and N.K. Tsing, Duality between some linear preserver problems II. Isometries with respect to $c$-spectral norms and matrices with fixed singular values, Linear Algebra Appl. 110 (1988), 181-212. MR 90m:15042
  • 14. C.K. Li and N.K. Tsing, Linear operators preserving unitarily invariant norms of matrices, Linear and Multilinear Algebra 26 (1990), 119-132. MR 91g:15017
  • 15. L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math. Oxford (2) 11 (1960), 50-59. MR 22:5639
  • 16. J. von Neumann, Some matrix-inequalities and metrization of matrix-space, Tomsk. Univ. Rev. 1 (1937), 286-300.
  • 17. A. Pietsch, Eigenvalues and $s$-Numbers, Cambridge Studies in Advanced Mathematics 13, Cambridge University Press, Cambridge, 1987. MR 88j:47022b
  • 18. M. Rais, The Unitary group preserving maps (the infinite dimensional case), Linear and Multilinear Algebra 20 (1987), 337-345. MR 88g:47095
  • 19. R. Schatten, Norm Ideals of Completely Continuous Operators, Springer-Verlag, Berlin, 1960. MR 22:9878
  • 20. A.R. Sourour, Isometries of norm ideals of compact operators, J. Funct. Anal. 43 (1981), 69-77. MR 84e:47061

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47D25

Retrieve articles in all journals with MSC (1991): 47D25


Additional Information

Jor-Ting Chan
Affiliation: Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong
Email: jtchan@hkucc.hku.hk

Chi-Kwong Li
Affiliation: Department of Mathematics, The College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795
Email: ckli@math.wm.edu

Charlies C. N. Tu
Affiliation: Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong

DOI: https://doi.org/10.1090/S0002-9939-00-05692-6
Keywords: $s$-number, extreme point, exposed point, isometric isomorphism
Received by editor(s): June 30, 1999
Published electronically: October 10, 2000
Communicated by: David R. Larson
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society