FS-property for -algebras

Authors:
Kazunori Kodaka and Hiroyuki Osaka

Journal:
Proc. Amer. Math. Soc. **129** (2001), 999-1003

MSC (1991):
Primary 46L05; Secondary 46L80

DOI:
https://doi.org/10.1090/S0002-9939-00-05712-9

Published electronically:
October 10, 2000

MathSciNet review:
1814139

Full-text PDF

Abstract | References | Similar Articles | Additional Information

A -algebra is said to *have the FS-property* if the set of all self-adjoint elements in has a dense subset of elements with finite spectrum. We shall show that this property is not stable under taking the minimal -tensor products even in case of separable nuclear -algebras.

**1.**B. Blackadar and A. Kumjian,*Skew products of relations and structure of simple -algebras*, Math. Z.,**189**(1985), 55-63. MR**86g:46083****2.**B. Blackadar, A. Kumjian, and M. Rørdam,*Approximately central matrix units and the structure of non-commutative tori*, K-Theory,**6**(1992), 267 - 284. MR**93i:46129****3.**L. G. Brown and G. K. Pedersen,*-algebras of real rank zero*, Jour. Funct. Anal.,**99**(1991), 131 - 149. MR**92m:46086****4.**J. Cuntz,*Simple -algebras generated by isometries*, Comm. Math. Phys.,**57**(1977), 173 - 185. MR**57:7189****5.**J. Cuntz,*K-theory for certain -algebras*, Ann. of Math.,**113**(1981), 181 - 197. MR**84c:46058****6.**J. Cuntz,*K-theory for certain -algebras II*, J. Operator Theory,**5**(1981), 101 - 108. MR**84k:46053****7.**J. De Cannière and U. Haagerup,*Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups*, Amer. J. Math.,**107**(1985), 455 - 500. MR**86m:43002****8.**E. Kirchberg,*The Fubini theorem for exact -algebras*, J. Operator Theory,**10**(1983), 3 - 8. MR**85d:46081****9.**K. Kodaka and H. Osaka,*Real rank of tensor products of -algebras*, Proc. Amer. Math. Soc.,**123**(1995), 2213 - 2215. MR**95i:46104****10.**H. Osaka,*Real rank of crossed products by connected compact groups*, Bull. London Math. Soc.,**27**(1995), 257 - 264. MR**96e:46076****11.**N. C. Phillips,*Approximate unitary equivalence of homomorphisms from odd Cuntz algebras*, Fields Inst. Commun.**13**, 1997. MR**97k:46068****12.**M. Rørdam,*Classification of inductive limits of Cuntz algebras*, J. Reine Angew. Math.,**440**(1993), 175 - 200. MR**94k:46120****13.**C. Schochet,*Topological methods for -algebras II: geometric resolutions and the Knneth formula*, Pacific J. Math.,**98**(1982), 443 - 458. MR**84g:46105b****14.**S. Zhang,*-algebras with real rank zero and internal structure of their corona and multiplier algebras III*, Can. J. Math.,**42**(1990), 159 - 190. MR**94i:46095****15.**S. Zhang,*A property of purely infinite simple -algebras*, Proc. Amer. Math. Soc.,**109**(1990), 717 - 720. MR**90k:46134**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46L05,
46L80

Retrieve articles in all journals with MSC (1991): 46L05, 46L80

Additional Information

**Kazunori Kodaka**

Affiliation:
Department of Mathematical Sciences, Faculty of Science, Ryukyu University, Nishi- hara-cho, Okinawa 903-0213, Japan

Email:
b985562@sci.u-ryukyu.ac.jp

**Hiroyuki Osaka**

Affiliation:
Department of Mathematics, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan

Email:
osaka@se.ritsumei.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-00-05712-9

Keywords:
$C^*$-algebras,
FS-property,
K-groups,
real rank

Received by editor(s):
December 5, 1997

Received by editor(s) in revised form:
June 10, 1999

Published electronically:
October 10, 2000

Additional Notes:
The results in this paper were presented at the Fields Institute in the program year “Operator Algebras and Applications” in 1994–1995

Communicated by:
David R. Larson

Article copyright:
© Copyright 2000
American Mathematical Society