Editorial Information

To be published in the Proceedings, a paper must be correct, new, nontrivial, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Proceedings Editors solicit and encourage publication of worthy papers of length not exceeding 10 published pages. Published pages are the same size as those generated in the style files provided for \texttt{AMS-\LaTeX} or \texttt{AMS-\TeX}.

Very short notes not to exceed two printed pages are also accepted, and appear under the heading Shorter Notes. Items deemed suitable include an elegant new proof of an important and well-known theorem, an illuminating example or counterexample, or a new viewpoint on familiar results. New results, if of a brief and striking character, might also be acceptable, though in general a paper which is merely very short will not be suitable for the Shorter Notes department.

As of November 30, 2000, the backlog for this journal was approximately 9 issues. This estimate is the result of dividing the number of manuscripts for this journal in the Providence office that have not yet gone to the printer on the above date by the average number of articles per issue over the previous twelve months, reduced by the number of issues published in four months (the time necessary for editing and composing a typical issue). In an effort to make articles available as quickly as possible, articles are posted to e-MATH individually soon after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. Two copies of the paper should be sent directly to the appropriate Editor and the author should keep a copy. \textit{If an editor is agreeable}, an electronic manuscript prepared in \texttt{\LaTeX} or \texttt{\TeX} may be submitted by pointing to an appropriate URL on a preprint or e-print server.

The first page of an article must consist of a \textit{descriptive title}, followed by an \textit{abstract} that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The \textit{descriptive title} should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The \textit{abstract} should be at least one complete sentence, and at most 150 words. Included with the footnotes to the paper should be the 2000 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from \texttt{www.ams.org/msc/}. The list of classifications is also available in print starting with the 1999 annual index of Mathematical Reviews. The Mathematics Subject Classification footnote may be followed by a list of \textit{key words and phrases} describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from \texttt{www.ams.org/publications/}. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at \texttt{www.ams.org/mrlookup/}. When the manuscript is submitted, authors should supply the editor with electronic addresses if available. These will be printed after the postal address at the end of each article.

Electronically prepared manuscripts. The AMS encourages electronically prepared manuscripts, with a strong preference for \texttt{AMS-\LaTeX}. To this end, the Society has prepared \texttt{AMS-\LaTeX} author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, the AMS Author Handbook, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \texttt{AMS-\LaTeX} style file and the \texttt{\label} and \texttt{\ref}
commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \TeX, using \texttt{AMS-\LaTeX} also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \texttt{AMS-\LaTeX} papers also move more efficiently through the production stream, helping to minimize publishing costs.

\texttt{AMS-\LaTeX} is the highly preferred format of \TeX, but author packages are also available in \texttt{AMS-T\TeX}. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \texttt{T\TeX} or plain \TeX are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production system. \texttt{T\TeX} users will find that \texttt{AMS-\LaTeX} is the same as \texttt{T\TeX} with additional commands to simplify the typesetting of mathematics, and users of plain \TeX should have the foundation for learning \texttt{AMS-\LaTeX}.

Authors may retrieve an author package from e-MATH starting from \url{www.ams.org/tex/} or via FTP to \url{ftp.ams.org} (login as \texttt{anonymous}, enter username as password, and type \texttt{cd pub/author-info}). The \textit{AMS Author Handbook} and the \textit{Instruction Manual} are available in PDF format following the author packages link from \url{www.ams.org/tex/}. The author package can also be obtained free of charge by sending email to \texttt{pub@ams.org} (Internet) or from the Publication Division, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When requesting an author package, please specify \texttt{AMS-\LaTeX} or \texttt{AMS-T\TeX}, Macintosh or IBM (3.5) format, and the publication in which your paper will appear. Please be sure to include your complete mailing address.

At the time of submission, authors should indicate if the paper has been prepared using \texttt{AMS-\LaTeX} or \texttt{AMS-T\TeX} and provide the Editor with a paper manuscript that matches the electronic manuscript. The final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also send the final version of the paper manuscript to the Editor, who will forward a copy to the Providence office. Editors will require authors to send their electronically prepared manuscripts to the Providence office in a timely fashion. Electronically prepared manuscripts can be sent via email to \texttt{pub-submit@ams.org} (Internet) or on diskette to the Electronic Prepress Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When sending a manuscript electronically, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

\textbf{Electronic graphics.} Comprehensive instructions on preparing graphics are available at \url{www.ams.org/jourhtml/graphics.html}. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFP files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator. No matter what method was used to produce the graphic, it is necessary to provide a paper copy to the AMS.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a "hairline" for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15\% and 85\%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10\%.
AMS policy on making changes to articles after posting. Articles are posted
to e-MATH individually after proof is returned from authors and before appearing in
an issue. To preserve the integrity of electronically published articles, once an article is
individually posted to e-MATH but not yet in an issue, changes cannot be made in place
in the paper. However, an “Added after posting” section may be added to the paper
right before the References when there is a critical error in the content of the paper.
The “Added after posting” section gives the author an opportunity to correct this type
of critical error before the article is put into an issue for printing and before it is then
reposted with the issue. The “Added after posting” section remains a permanent part of
the paper. The AMS does not keep author-related information, such as affiliation, current
address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to
e-MATH, corrections may be made to the paper by submitting a traditional errata article
to the Editor. The errata article will appear in a future print issue and will link back and
forth on the web to the original article online.

Secure manuscript tracking on the Web and via email. Authors can track their
manuscripts through the AMS journal production process using the personal AMS ID and
Article ID printed in the upper right-hand corner of the Consent to Publish form sent to
each author who publishes in AMS journals. Access to the tracking system is available
from www.ams.org/mstrack/ or via email sent to mstrack-query@ams.org. To access by
email, on the subject line of the message simply enter the AMS ID and Article ID. To
track more than one manuscript by email, choose one of the Article IDs and enter the
AMS ID and the Article ID followed by the word all on the subject line. An explanation
of each production step is provided on the web through links from the manuscript tracking
screen. Questions can be sent to proc-query@ams.org.

\TeX files available. Beginning with the January 1992 issue of the Bulletin and
the January 1996 issues of Transactions, Proceedings, Mathematics of Computation, and
the Journal of the AMS, \TeX files can be downloaded from e-MATH, starting from
www.ams.org/journals/. Authors without Web access may request their files at the
address given below after the article has been published. For Bulletin papers published in
1987 through 1991 and for Transactions, Proceedings, Mathematics of Computation, and
the Journal of the AMS papers published in 1987 through 1995, \TeX files are available
upon request for authors without Web access by sending email to file-request@ams.org
or by contacting the Electronic Prepress Department, American Mathematical Society,
P.O. Box 6248, Providence, RI 02940-6248. The request should include the title of the
paper, the name(s) of the author(s), the name of the publication in which the paper has
or will appear, and the volume and issue numbers if known. The \TeX file will be sent to
the author making the request after the article goes to the printer. If the requestor can
receive Internet email, please include the email address to which the file should be sent.
Otherwise please indicate a diskette format and postal address to which a disk should
be mailed. Note: Because \TeX production at the AMS sometimes requires extra fonts
and macros that are not yet publicly available, \TeX files cannot be guaranteed to run
through the author’s version of \TeX without errors. The AMS regrets that it cannot
provide support to eliminate such errors in the author’s \TeX environment.

Inquiries. Any inquiries concerning a paper that has been accepted for publication
that cannot be answered via the manuscript tracking system mentioned above should be
sent to proc-query@ams.org or directly to the Electronic Prepress Department, American
Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248.
Editors

Authors are requested to send papers directly to the appropriate Editor (the one whose area of responsibility and expertise, as described below, most closely approximates the subject field of the manuscript). Only when in doubt about an appropriate Editor, should manuscripts be sent to the Coordinating Editor responsible for the area in mathematics most closely connected to the paper. If in doubt about the area, send the manuscript to the Managing Editor, to whom all other communication about the journal should also be addressed. (All addresses should include the line “Department of Mathematics”, unless another department is indicated.)

Managing Editor: Eric Bedford, Indiana University, Bloomington, IN 47405-5701; e-mail: bedford@indiana.edu

1. ODE, PDE, GLOBAL ANALYSIS, AND DYNAMICAL SYSTEMS
Coordinating Editor: Linda Keen, CUNY-Lehman College, Bronx, NY 10468; e-mail: linda@alpha.lehman.cuny.edu; keen@bers.gc.cuny.edu

Partial differential equations, David S. Tartakoff, University of Illinois at Chicago, Chicago, IL 60607; e-mail: dst@uic.edu

Dynamical systems and ergodic theory, Michael Handel, Department of Mathematics and Computer Science, Herbert Lehman College (CUNY), Bronx, NY 10468-1589; e-mail: michael@alpha.lehman.cuny.edu

Ordinary differential equations and special functions, Carmen C. Chicone, University of Missouri, Columbia, MO 65211-0001; e-mail: carmen@chicone.math.missouri.edu

Global analysis, Jozef Dodziuk, Ph.D. Program in Mathematics, Graduate School and University Center (CUNY), 365 Fifth Avenue, New York, NY 10016-4309; e-mail: jodziuk@gc.cuny.edu

2. LIE GROUPS, TOPOLOGY, AND GEOMETRY
Coordinating Editor: Ronald A. Fintushel, Michigan State University, East Lansing, MI 48824-1027; e-mail: ronfint@math.msu.edu

Topological groups and Lie groups (symmetric spaces), Rebecca Herb, University of Maryland, College Park, MD 20742; e-mail: rah@math.umd.edu

Riemannian geometry (including affine, pseudo-Riemannian, contact, classical, and Lorentzian geometries), Wolfgang Ziller, University of Pennsylvania, Philadelphia, PA 19104-6317; e-mail: wziller@math.upenn.edu

Geometric analysis (geometric PDE, minimal surfaces and harmonic maps), Bennett Chow, University of California San Diego, La Jolla, CA 92093; e-mail: benchow@euclid.ucsd.edu

Algebraic topology, Paul Goerss, Northwestern University, Evanston, IL 60208-2730; e-mail: pgoerss@math.nwu.edu

Set-theoretic and general topology, Alan Dow, University of North Carolina at Charlotte, Charlotte, NC 28223-0001; e-mail: adow@math.uncc.edu

Low dimensional topology, gauge theory, 4-manifolds, Ronald A. Fintushel

Complex and Kähler geometry, Mohan Ramachandran, State University of New York at Buffalo, Buffalo, NY 14260-2900; e-mail: ramac-m@newton.math.buffalo.edu

3. ANALYSIS AND OPERATOR THEORY
Coordinating Editor: Eric Bedford, Indiana University, Bloomington, IN 47405-5701; e-mail: bedford@indiana.edu

One complex variable and potential theory, Juha M. Heinonen, University of Michigan, Ann Arbor, MI 48109-1109; e-mail: PAMS@math.lsa.umich.edu

Several complex variables, Mei-Chi Shaw, University of Notre Dame, Notre Dame, IN 46556-0398; e-mail: mei-chi.shaw.1@nd.edu
Linear and nonlinear functional analysis, Jonathan M. Borwein, Department of Mathematics and Statistics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; e-mail: jborwein@ccm.sfu.ca

Banach spaces and linear functional analysis, N. Tomczak-Jaegermann, University of Alberta, Edmonton, AB, Canada T6G 2G1; e-mail: ntomczak@math.ualberta.ca; nicole.tomczak@ualberta.ca

Operator Theory, Joseph A. Ball, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; e-mail: ball@math.vt.edu

Operator algebras and wavelets, David R. Larson, Texas A&M University, College Station, TX 77843-3368; e-mail: larson@math.tamu.edu

Geometric measure theory and classical real analysis, David Preiss, University College London, Gower Street, London WC1E 6BT, UK; e-mail: dp@math.ucl.ac.uk

Harmonic analysis, Christopher D. Sogge, Johns Hopkins University, Baltimore, MD 21218; e-mail: sogge@jhu.edu

Analytic number theory and automorphic forms, Dennis A. Hejhal, School of Mathematics, University of Minnesota, Minneapolis, MN 55455-0488; e-mail: hejhal@math.umn.edu

4. ALGEBRA, NUMBER THEORY, COMBINATORICS, AND LOGIC
Coordinating Editor: Lance W. Small, University of California San Diego, La Jolla, CA 92093-0112; e-mail: lwsmall@ucsd.edu

General number theory, David E. Rohrlich, Boston University, Boston, MA 02215-2411; e-mail: rohrlich@math.bu.edu

Commutative algebra, Wolmer V. Vasconcelos, Rutgers University, New Brunswick, NJ 08903-2101; e-mail: vasconce@math.rutgers.edu

Group theory, Stephen D. Smith, University of Illinois at Chicago, Chicago, IL 60607; e-mail: smiths@math.uic.edu

Algebraic geometry, Michael Stillman, Cornell University, Malott Hall, Ithaca, NY 14853-4201; e-mail: mike@math.cornell.edu

Combinatorics, John R. Stembridge, University of Michigan, Ann Arbor, MI 48109-1109; e-mail: jrs@math.lsa.umich.edu

Analytic number theory and automorphic forms, Dennis A. Hejhal, School of Mathematics, University of Minnesota, Minneapolis, MN 55455-0488; e-mail: hejhal@math.umn.edu

Logic and foundations, Carl G. Jockusch, Jr., University of Illinois, 1409 W. Green St., Urbana, IL 61801-2917; e-mail: jockusch@math.uiuc.edu

Lie algebras, Dan M. Barbasch, Cornell University, Malott Hall, Ithaca, NY 14853-4201; e-mail: barbasch@math.cornell.edu

Noncommutative rings, Martin Lorenz, Temple University, Philadelphia, PA 19122-6094; e-mail: lorenz@math.temple.edu

5. APPLIED MATHEMATICS, PROBABILITY, AND STATISTICS
Coordinating Editor: Mark J. Ablowitz, Department of Applied Mathematics, Campus Box 526, University of Colorado, Boulder, CO 80309-0526; e-mail: markjab@newton.colorado.edu

Probability, Claudia M. Neuhauser, School of Mathematics, University of Minnesota, Minneapolis, MN 55455; e-mail: nhauser@math.umn.edu

Statistics, Richard A. Davis, Department of Statistics, Colorado State University, Fort Collins, CO 80523-1877; e-mail: rdavis@stat.colostate.edu
Applied mathematics, David Sharp, Theoretical Division, Los Alamos National Laboratory MSB285, Los Alamos, NM 87545; e-mail: dhs@lanl.gov

Hyperbolic partial differential equations, Suncica Canic, University of Houston, Houston, TX 77204-3476; e-mail: canic@math.uh.edu
A. Askari-Hemmat, M. A. Dehghan, and M. Radjabalipour, Generalized frames and their redundancy .. 1143

D. GEOMETRY

Romildo Pina and Keti Tenenblat, Conformal metrics and Ricci tensors in the pseudo-Euclidean space .. 1149
Y. Byun, Y. Lee, J. Park, and J. S. Ryu, Constructing the Kähler and the symplectic structures from certain spinors on 4-manifolds 1161
Tanya Schmah, Torus actions on symplectic orbi-spaces 1169

E. LOGIC AND FOUNDATIONS

Yuan-Qing Qiao, Martin’s Axiom does not imply perfectly normal non-archimedean spaces are metrizable .. 1179
Fred Richman, Adjoints and the image of the ball 1189
Pierre Matet, A short proof of Ellentuck’s Theorem 1195

G. TOPOLOGY

C. Greco, A bifurcation result for harmonic maps from an annulus to S^2 with not symmetric boundary data 1199
Greg Arone, The Mitchell-Richter filtration of loops on Stiefel manifolds stably splits ... 1207
J.-F. Dat, Une preuve courte du principe de Selberg pour un groupe p-adique ... 1213
Francis Jordan and Sam B. Nadler, Jr., A result about a selection problem of Michael ... 1219
M. Hoster and D. Kotschick, On the simplicial volumes of fiber bundles 1229
William Beckner, On the Grushin operator and hyperbolic symmetry 1233
Terry Fuller, On fiber-preserving isotopies of surface homeomorphisms 1247

ERRATA

Manuel González and Joaquín M. Gutiérrez, Erratum to “Injective factorization of holomorphic mappings” 1255
A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS

D. S. Passman, Trace methods in twisted group algebras .. 943
José L. Gómez Pardo and Pedro A. Guil Asensio, Every Σ-CS-module has an indecomposable decomposition ... 947
Harm Derksen, Polynomial bounds for rings of invariants .. 955
Jason Fulman, Descent algebras, hyperplane arrangements, and shuffling cards 965

B. ANALYSIS

Shaohua Chen, Global existence and blowup of solutions for a parabolic equation with a gradient term ... 975
Wei Wu, An order characterization of commutativity for C^*-algebras 983
János Aczél, Gyula Maksa, Che Tat Ng, and Zsolt Páles, A functional equation arising from ranked additive and separable utility ... 989
Kazunori Kodaka and Hiroyuki Osaka, FS-property for C^*-algebras 999
M. H. Faroughi, Subsemivarieties of Q-algebras .. 1005
Ravi P. Agarwal and Donal O'Regan, Essentiality for Mönch type maps 1015
W. E. Longstaff and Oreste Panaia, Single elements of finite CSL algebras 1021
Michael Taylor, The Dirichlet-Jordan test and multidimensional extensions 1031
Weifu Fang and Kazufumi Ito, Existence and uniqueness of steady-state solutions for an electrochemistry model .. 1037
Pere Ara, Morita equivalence and Pedersen ideals ... 1041
Frank Wikström, Non-linearity of the pluricomplex Green function 1051
A. R. Villena, Elements in a commutative Banach algebra determining the norm topology ... 1057
Jor-Ting Chan, Chi-Kwong Li, and Charlies C. N. Tu, A class of unitarily invariant norms on $B(H)$... 1065
Valentin Deaconu and Paul S. Muhly, C^*-algebras associated with branched coverings ... 1077
David Lannes and Jeffrey Rauch, Validity of nonlinear geometric optics with times growing logarithmically ... 1087
Vern I. Paulsen and Dinesh Singh, A Helson-Lowdenslager-de Branges theorem in L^2 ... 1097
Qi S. Zhang, Global lower bound for the heat kernel of $-\Delta + \frac{c}{|x|^2}$ 1105
Jing Zhang, Stability of wavelet frames and Riesz bases, with respect to dilations and translations ... 1113
Krzysztof Stempak, Divergent Laguerre series .. 1123
Yong Ding, Shanzhen Lu, and Dachun Yang, A criterion on weighted L^p boundedness for rough multilinear oscillatory singular integrals ... 1127
Yasuhide Miura and Kiminao Nishiyama, Complete orthogonal decomposition homomorphisms between matrix ordered Hilbert spaces ... 1137

(Continued on inside back cover)