Products of Michael spaces and completely metrizable spaces

Authors:
Dennis K. Burke and Roman Pol

Journal:
Proc. Amer. Math. Soc. **129** (2001), 1535-1544

MSC (1991):
Primary 54E50, 54E52, 54D15

DOI:
https://doi.org/10.1090/S0002-9939-00-05664-1

Published electronically:
October 10, 2000

MathSciNet review:
1712941

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For disjoint subsets of the Michael space has the topology obtained by isolating the points in and letting the points in retain the neighborhoods inherited from . We study normality of the product of Michael spaces with complete metric spaces. There is a ZFC example of a Lindelöf Michael space , of minimal weight , with Lindelöf but with not normal. ( denotes the countable product of a discrete space of cardinality .) If denotes , the normality of implies the normality of for any complete metric space (of arbitrary weight). However, the statement `` normal implies normal'' is axiom sensitive.

**[E]**R. Engelking,*General Topology*, Heldermann Verlag, Berlin, 1989. MR**91c:54001****[F1]**W. Fleissner,*An axiom for nonseparable Borel theory*, Trans. Amer. Math. Soc. 251 (1979), 309-328. MR**83c:03043****[F2]**W. Fleissner,*Separation properties in Moore spaces*, Fund. Math. 98 (1978), 279-286. MR**57:17600****[Fr1]**D. H. Fremlin,*Consequences of Martin's Axiom*, Cambridge University Press, Cambridge, 1984. MR**86i:03001****[Fr2]**D. H. Fremlin,*Measure-additive coverings and measurable selectors*, Dissertationes Math. 260 (1987). MR**89e:28012****[H]**W. Hurewicz,*Relativ Perfekte Teile von Punktmengen ung Mengen (A)*, Fund. Math. 12 (1928), 78-109.**[J]**T. Jech,*Set Theory*, Academic Press, New York, 1978. MR**80a:03062****[Je]**R. B. Jensen,*The fine structure of the constructible hierarchy*, Ann. Math. Logic 4 (1972), 229-308. MR**46:8834****[K]**A. S. Kechris,*Classical Descriptive Set Theory*, Springer-Verlag, New York, 1995. MR**96e:03057****[Ko]**G. Koumoullis,*Cantor sets in Prohorov spaces*, Fund. Math. 124 (1984), 155-161. MR**86c:54038****[Ku]**K. Kunen,*Set Theory*, North-Holland, Amsterdam, 1980. MR**82f:03001****[Kur]**K. Kuratowski,*Topology, Volume 1*, Polish Scientific Publishers, Warsaw, 1966. MR**36:840****[L1]**L. B. Lawrence,*The influence of a small cardinal on the product of a Lindelöf space with the irrationals*, Proc. Amer. Math. Soc. 110 (1990), 535-542. MR**90m:54014****[L2]**L. B. Lawrence,*A ZFC example (of minimum weight) of a Lindelöf space and a completely metrizable space with a nonnormal product*, Proc. Amer. Math. Soc. 124 (1996), 627-632. MR**96d:54005****[M1]**E. A. Michael,*The product of a normal space and a metric space need not be normal*, Bull. Amer. Math. Soc. 69 (1963), 375-376. MR**27:2956****[M2]**E. A. Michael,*Paracompactness and the Lindelöf property in finite and countable cartesian products*, Compositio Math. 23 (1971), 199-214. MR**44:4706****[M3]**E. A. Michael,*A note on completely metrizable spaces*, Proc. Amer. Math. Soc. 96 (1986), 513-522. MR**88a:54068****[P]**R. Pol,*Note on decompositions of metrizable spaces II*, Fund. Math. 100 (1978), 129-143. MR**58:12953****[RS]**M. E. Rudin and M. Starbird,*Products with a metric factor*, Gen. Top. Appl. 5 (1975), 235-248. MR**52:1606****[S]**A. Stone,*On -discreteness and Borel isomorphisms*, Amer. J. Math. 85 (1963), 655-666. MR**28:33**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
54E50,
54E52,
54D15

Retrieve articles in all journals with MSC (1991): 54E50, 54E52, 54D15

Additional Information

**Dennis K. Burke**

Affiliation:
Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45056

Email:
dburke@miavx1.muohio.edu

**Roman Pol**

Affiliation:
Department of Mathematics, Warsaw University, Warsaw, Poland

Email:
pol@mimuw.edu.pl

DOI:
https://doi.org/10.1090/S0002-9939-00-05664-1

Keywords:
Michael space,
product spaces,
normal,
completely metrizable,
Baire space,
absolute $G_\delta$

Received by editor(s):
March 8, 1998

Received by editor(s) in revised form:
July 28, 1999

Published electronically:
October 10, 2000

Additional Notes:
The results in this note were obtained while the second author was a Visiting Professor at Miami University. The author would like to express his gratitude to the Department of Mathematics and Statistics of Miami University for their hospitality.

Communicated by:
Alan Dow

Article copyright:
© Copyright 2000
American Mathematical Society