Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The expected $L_{p}$ norm of random polynomials

Authors: Peter Borwein and Richard Lockhart
Journal: Proc. Amer. Math. Soc. 129 (2001), 1463-1472
MSC (1991): Primary 26D05
Published electronically: October 25, 2000
MathSciNet review: 1814174
Full-text PDF

Abstract | References | Similar Articles | Additional Information


The results of this paper concern the expected $L_{p}$ norm of random polynomials on the boundary of the unit disc (equivalently of random trigonometric polynomials on the interval $[0, 2\pi ]$). Specifically, for a random polynomial

\begin{displaymath}q_{n}(\theta ) = \sum_{0}^{n-1}X_{k}e^{ik\theta}\end{displaymath}


\begin{displaymath}\vert\vert q_{n}\vert\vert _{p}^{p}= \int _{0}^{2\pi } \vert q_{n}(\theta )\vert^{p} \,d\theta /(2\pi ). \end{displaymath}

Assume the random variables $X_{k},k\ge 0$, are independent and identically distributed, have mean 0, variance equal to 1 and, if $p>2$, a finite $ p^{th}$ moment ${\mathrm E}(\vert X_{k}\vert^{p})$. Then

\begin{displaymath}\frac{\text{ E}(\vert\vert q_{n}\vert\vert _{p}^{p})}{n^{p/2}} \to \Gamma (1+p/2) \end{displaymath}


\begin{displaymath}\frac{\text{E}(\vert\vert q_{n}^{(r)}\vert\vert _{p}^{p})}{n^{(2r+ 1)p/2}} \to (2r+1)^{-p/2}\Gamma (1+p/2) \end{displaymath}

as $n\to \infty $.

In particular if the polynomials in question have coefficients in the set $\{+1,-1\}$ (a much studied class of polynomials), then we can compute the expected $L_{p}$ norms of the polynomials and their derivatives

\begin{displaymath}\frac{\text{ E}(\vert\vert q_{n}\vert\vert _{p})}{n^{1/2}} \to (\Gamma (1+p/2))^{1/p} \end{displaymath}


\begin{displaymath}\frac{\text{ E}(\vert\vert q_{n}^{(r)}\vert\vert _{p})}{n^{(2r+1)/2}} \to (2r+1)^{-1/2}(\Gamma (1+p/2))^{1/p}. \end{displaymath}

This complements results of Fielding in the $p:=0$ case, Newman and Byrnes in the $p:=4$ case, and Littlewood et al. in the $p=\infty $ case.

References [Enhancements On Off] (What's this?)

  • [An-83] Hong-Zhi An, Zhao-Guo Chen and E.J. Hannan, The Maximum of the Periodogram, Jour. Mult. Anal. 13 (1983), 383-400. MR 85e:60033
  • [Bec-91] J. Beck, Flat polynomials on the unit circle - note on a problem of Littlewood, Bull. London Math. Soc. 23 (1991), 269-277. MR 93b:42002
  • [Be-39] S. Bernstein, Quelques remarques sur le théorème limite Liapounoff, Doklad. Akad. Nauk. SSSR 24 (1939), 3-8.
  • [Bh-86] A.T. Bharucha-Reid and M. Sambandham, Random Polynomials, Academic Press, Orlando, 1986. MR 87m:60118
  • [Bor-98] P. Borwein, Some Old Problems on Polynomials with Integer Coefficients, in Approximation Theory IX, ed. C. Chui and L. Schumacher, Vanderbilt Univ. Press (1998), 51-58. CMP 2000:11
  • [Bor-95] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995. MR 97e:41001
  • [Boy-97] D. Boyd, On a problem of Byrnes concerning polynomials with restricted coefficients, Math. Comput. 66 (1997), 1697-1703. MR 98a:11033
  • [Bri-75] D.R. Brillinger, Time Series Data Analysis and Theory, Holt, Rinehart and Winston, New York, 1975.
  • [Br-70] B. M. Brown, Characteristic functions, moments and the central limit theorem, Ann. Math. Statist. 41 (1970), 658-664. MR 41:6285
  • [Ca-77] F.W. Carrol, D. Eustice and T. Figiel, The minimum modulus of polynomials with coefficients of modulus one, Jour. London Math. Soc. 16 (1977), 76-82. MR 58:1102
  • [Cl-59] J. Clunie, On the minimum modulus of a polynomial on the unit circle, Quart. J. Math. 10 (1959), 95-98.
  • [Er-62] P. Erdos, An inequality for the maximum of trigonometric polynomials, Annales Polonica Math. 12 (1962), 151-154. MR 25:5330
  • [Fi-70] G.T. Fielding, The expected value of the integral around the unit circle of a certain class of polynomials, Bull. London Math. Soc. 2 (1970), 301-306. MR 43:6408
  • [Ha-73] G. Halász, On a result of Salem and Zygmund concerning random polynomials, Studia Sci. Math. Hungar. 8 (1973), 369-377. MR 51:3787
  • [Kac-48] M. Kac, On the average number of real roots of a random algebraic equation, II, Proc. London Math. Soc. 50 (1948), 390-408. MR 11:40e
  • [Kah-80] J-P. Kahane, Sur les polynômes á coefficients unimodulaires, Bull. London Math. Soc 12 (1980), 321-342. MR 82a:30003
  • [Kah-85] J-P. Kahane, Some Random Series of Functions, vol. 5, Cambridge Studies in Advanced Mathematics, Cambridge, 1985; Second Edition. MR 87m:60119
  • [Ko-80] S. Konjagin, On a problem of Littlewood, Izv. A. N. SSSR, ser. mat. 45, 2 (1981), 243-265.
  • [Kö-80] T.W. Körner, On a polynomial of J.S. Byrnes, Bull. London Math. Soc. 12 (1980), 219-224. MR 81i:30009
  • [Li-61] J.E. Littlewood, On the mean value of certain trigonometric polynomials, Jour. London Math. Soc. 36 (1961), 307-334. MR 25:5331a
  • [Li-66] J.E. Littlewood, On polynomials $\sum ^{n} \pm z^{m}$ and $\sum ^{n} e^{\alpha _{m}i} z^{m}$, $z=e^{\theta i}$, Jour. London Math. Soc. 41 (1966), 367-376. MR 33:4237
  • [Li-68] J.E. Littlewood, Some Problems in Real and Complex Analysis, Heath Mathematical Monographs, Lexington, Massachusetts, 1968. MR 39:5777
  • [Ma-63] K. Mahler, On two extremal properties of polynomials, Illinois J. Math. 7 (1963), 681-701. MR 28:192
  • [Ne-90] D.J. Newman and J. S. Byrnes, The $L^{4}$ norm of a polynomial with coefficients $\pm 1$, MAA Monthly 97 (1990), 42-45. MR 91d:30006
  • [Od-93] A. Odlyzko and B. Poonen, Zeros of polynomials with 0,1 coefficients, Ens. Math. 39 (1993), 317-348. MR 95b:11026
  • [Qe-96] H. Queffélec and B.Saffari, On Bernstein's inequality and Kahane's ultraflat polynomials, J. Fourier Anal. Appl 2 (1996), 519-582. MR 97h:41027
  • [Ro-97] L. Robinson, Polynomials With ${\pm 1}$ Coefficients: Growth Properties on the Unit Circle, Simon Fraser University, Masters Thesis (1997). MR
  • [Sa-90] B. Saffari, Barker sequences and Littlewood's ``two sided conjectures'' on polynomials with $\pm 1$ coefficients, Séminaire d'Analyse Harmonique, 1989/90, Univ. Paris XI, Orsay, 1990, 139-151.
  • [Sa-54] R. Salem and A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta Math 91 (1954), 254-301. MR 16:467b
  • [Ul-88] D. Ullrich, An extension of the Kahane-Khinchine inequality, Bull. Amer. Math. Soc. 18 (1988), 52-54. MR 88k:60090

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 26D05

Retrieve articles in all journals with MSC (1991): 26D05

Additional Information

Peter Borwein
Affiliation: Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Richard Lockhart
Affiliation: Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Keywords: Random polynomial, Littlewood polynomial, expected $L_{p}$ norm
Received by editor(s): December 18, 1998
Received by editor(s) in revised form: August 31, 1999
Published electronically: October 25, 2000
Additional Notes: Research supported in part by the NSERC of Canada.
Communicated by: Albert Baernstein II
Article copyright: © Copyright 2000 by the authors

American Mathematical Society